• Title/Summary/Keyword: cable voltage measurement

Search Result 73, Processing Time 0.018 seconds

Partial Discharge Detection for the Power Cables using AC and Oscillating wave Voltage (전력케이블에서 교류전압과 진동파 전압을 이용한 부분방전 측정)

  • Kim, Jeong-Tae;Kim, Nam-Jun;Lee, Jeon-Seon;Gu, Ja-Yun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.247-252
    • /
    • 1999
  • In this paper, in order to investigate availability of the OW-PD measurement method which has been proposed as an alternative of AC-PD measurement method to an after laying test and/or diagnosis for the power cable system, partial discharges owing to the needle-type defect integrated into the cable have been measured using AC and OW(Oscillating Wave) voltages. In the AC-PD measurement, the magnitude, phase and pulse number of partial discharges have been changed with the duration of voltage application, which can be analyzed through the relation with the process of the electrical tree initiation and propagation. In addition, the characteristics of partial discharges using OW voltage are appeared to be similar to those in case of AC-PD measurement and to be different with the shapes of electrical tree. From these results, it is concluded that the OW-PD measurement method is available to the tests for the cable system.

  • PDF

The residual voltage properties of 6.6kV XLPE Cable (6.6kV XLPE Cable의 잔류 전압 특성)

  • Lee, Chang-Hoon;Oh, Jae-Hyung;Wu, Guangning;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1632-1634
    • /
    • 1998
  • In this paper, the study of influence of DC voltage and AC voltage on residual voltage of XLPE Cable was presented. In the former case, when the DC voltage of -10.0[kV] was applied to XLPE Cable for 0, 600, 1200, 1800[sec], time constants were 2139, 1416, 939, 488[sec] and resistivities were 930, 615.65, 408.26, 212.17[${\Omega}{\cdot}m$] respectively. In the latter case, when the AC voltage of 4 and 6[kV] was applied to the same Cable for 600[sec] after applying DC voltage of -5.0[kV] for 600[sec], time constants were 215, 275[sec] and resistivities were 93.48, 119.57[${\Omega}{\cdot}m$] respectively. In this experiments, measurement voltage, charging time and measurement time were -8.0[kV], 30[sec], 600[sec] respectively.

  • PDF

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

A Evaluation Technique for Reliability of Extra-High Voltage Cable Accessories using High Frequency Partial Discharge Measurement (고주파 부분방전 측정에 의한 초고압 접속함 신뢰성 평가 기술)

  • Sin, Du-Seong;Lee, Chang-Yeong;Kim, Chung-Sik;Jeon, Seung-Ik;Kim, Dong-Uk;Park, Wan-Gi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.3
    • /
    • pp.186-195
    • /
    • 2000
  • In this paper, partial discharge (PD) measurement was performed to evaluate the quality of the cable joint and termination constructions. The resistive coupling technique for PD detection using resistivity of semiconducting layer of the cable in the accessories, such as joints and terminations. With high frequency PD (HEPD) measurement, an excellent sensitivity below 20pC could be achieved under unshielded condition. The localization of the defects in the accessories could be identified. During heating cycle, PDs were monitored and analyzed. At that time, the PDs were dependent on the temperature of the heating cycle and showed cyclic behaviors, which were attributed to local delamination of the interfaces, between epoxy unit and stress relief cone(SRC) and between SRC and cable, due to the difference of thermal expansion. As a conclusion, HFPD measurement technique was proven to be an effective diagnostic method for qualification of extra high voltage (EHV) cable accessories. With this technique, the optimal design of the components of the accessories could be verified not only in an early stage but also under operating condition. This technique would result in the improvement of the reliability of the EHV cable accessories.

  • PDF

Effect of the voltage lead configurations on AC Loss Measurement in a Single Layer High-Tc Superconducting Model Cable (전압리드의 배치가 단층 고온초전도 모델케이블의 교류손실 측정에 미치는 영향)

  • 류경우;정재훈;황시돌;김석환
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.670-675
    • /
    • 2002
  • AC loss is an important issue in the design of high-T$_{c}$ superconducting Power cables. The cables consists of a number of Bi-2223 tapes wound on a former. In such cables tapes have different critical current characteristics intrinsically. And they are electrically connected to each other and current leads by soldering. These make loss measurements considerably complex, especially for short samples of laboratory size. Special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work the at losses in a single layer model cable have been experimentally investigated for different contacts and arrangements of voltage leads. The results show that the losses are not dependent on both arrangements and contact positions of the voltage leads. This implies that loss flux is only in a cylindrical conductor section. The measured losses also agree well with those based on a monoblock model and are independent of frequencies. This means that the measured AC loss of the model cable is purely hysteretic in nature.e.

AC loss Measurement of Superconducting Power Cable (초전도 전력케이블의 교류손실 측정)

  • Hwang, Si-Dole;Hyun, Ok-Bae;Sohn, Song-Ho;Choi, Hyung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.524-526
    • /
    • 2005
  • As a research activity of the project of "Verification Test of Superconducting Power Cable", we measured the AC loss of a short length superconducting power cable. The rating and the length of the cable were 22.9kV, 1,250A and 2.2m. The voltage taps for measuring the AC loss were attached to both ends of the conductor of the superconducting cable. Through the voltage taps and a lock-in amplifier we measured the in-phase component of the voltage($V_x$) with the load current(I). The AC loss was measured by multiplying the in-phase component of the voltage($V_x$) by the load current(I). The value of the AC loss of the superconducting power cable was 1.18W/m/phase/kA at 77.3K, 1atm.

  • PDF

Study on Multi Parameter Measurement and Analysis of Distribution High Voltage Cable Connection Part (배전용 특고압 케이블 접속재의 다변수 측정 분석 연구)

  • Song, Ki-Hong;Bae, Young-Chul;Kim, Yi-Gon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.53-60
    • /
    • 2021
  • High voltage CV cables have been widely installed underground due to their convenience and urban aesthetics. However, cable accidents have occurred frequently owing to poor construction and natural degradations. This paper proposes the method to measure the multi parameter measurement for optimum diagnostics of high voltage cable connection parts and verifies its technical usefulness. This measurement is intended to diagnose degradations of cable connection parts by using simultaneous vibration and thermography as well as partial discharge(PD). The experiment in a shielded laboratory was carried out to verify the usefulness of the multi parameter measurement. The experiment defined the degradation of the cable connection part as 12 types, and produced each degradation sample. As a result of experiment, it was possible to check the correlation of vibration signals with regard to progress in some defects. In the case of thermography, the coherence with regard to the progress of some defects was found. We figure that the proposed method would be useful also in the noise environment.

Field Application of Power Cable Diagnosis System (전력케이블 열화진단기법의 현장적용)

  • Kim, Ju-Yong;Han, Jae-Hong;Song, Il-Keun;Kim, Sang-Jun;Lee, Jae-Bong;Oh, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.148-151
    • /
    • 2002
  • In order to prevent the failures of underground distribution power cables we need to measure insulation condition in the field. Until now we used DC high voltage as a power source for the cable diagnosis but it was not proper method to the XLPE insulation cables because DC high voltage can affect sound insulation and can't diagnose exactly insulation degradation. For these reasons we imported isothermal relaxation current measurement system called by KDA-1 from germany but it's reliability did not proved in our URD cables. DC voltage decay measurement system was developed by domestic company but they don't have field experience. In this paper we tried to prove reliability of these two systems in the field. Through the field diagnosis and Ac breakdown test the two systems showed similar results.

  • PDF

Behavior of Residual Charges in Water-tree Degraded XLPE Sheets and Cable

  • Ebinuma, Yasumitsu;Masui, Noriaki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.224-229
    • /
    • 2006
  • Many studies have been done on the application of residual charge measurement in cable degradation diagnosis. In this paper, the behavior of residual charges measured with water-tree degraded XLPE sheets and cable are discussed. At charge injection process, the charge is injected by applying dc voltage as a conventional method, suddenly cut-off ac voltage or impulse voltage. Therefore the residual charge is influenced by the applying process. At charge release process, transient dc current flows when applying ac high voltage and also ac high voltage superimposed to dc low voltage. From the results, new diagnosis method is suggested.

Performance Estimation of Protector for 154 kV Underground Cable (154kV 지중 케이블 보호장치의 성능평가)

  • Cho, H.G.;Lee, J.H.;Han, S.W.;Kim, S.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.127-131
    • /
    • 2002
  • The surge protector is crucial power apparatus to guarantee the safe operation of power transmission of underground cable which can effectively restrain the overvoltage and inductive lightning stroke in power system. The surge protector is crucial power apparatus to guarantee the safe operation of power transmission of underground cable which can effectively restrain the overvoltage and inductive lightning stroke in power system. This paper described the results of a study on the performance for surge protector for underground cable. And, the performance of surge protector was evaluated through such as measurement of the reference voltage, residual voltage and impulse current etc. In results of surge protector, reference and residual voltage of ZnO element is 4.75 kV, 9.86 kV respectively. Also, In the impulse current test, thermal properties are good, despite of that polymeric housing of surge protector has thick structure. Therefore the developed surge protector is thought to apply for underground cable.

  • PDF