• 제목/요약/키워드: cable tension monitoring

검색결과 42건 처리시간 0.018초

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

신뢰성에 기초한 사장교 케이블 장력 관리기준치 설정 (Reliability-Based Managing Criteria for Cable Tension Force in Cable-stayed Bridges)

  • 조효남;강경구;차철준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.129-138
    • /
    • 2005
  • 본 논문은 사장교에서 모니터링 시스템을 통해 획득한 가속도 자료를 이용하여 케이블 관리기준 장력을 결정하기 위한 방법을 제시한다. 현재 한국의 많은 장대교량에 모니터링 시스템이 설치되어 있다. 모니터링 시스템은 교량의 이상현상이나 손상을 진단하고 관리주체에 경고하기 위해 설치된다. 사장교에 있어서는 그 기하학적인 형상 때문에 케이블 장력이 교량 이상징후의 중요한 지시가 될 수 있다. 만약 케이블 장력관리치가 너무 높거나 또는 너무 낮게 설정되면, 모니터링 시스템은 교량의 이상징후를 적절하게 경고하지 못할 것이다. 일반적으로, 관리치는 경험이나 공학적 판단에 의해 결정된다. 그러나 본 논문에서는 케이블 장력에 대한 확률분포모형과 신뢰성 해석에 기초한 새로운 케이블 장력관리치 설정에 대한 방법을 제시한다. 제안된 방법은 적용성 검토를 위하여 실제 콘크리트 사장교에 적용되었다.

Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique

  • Kim, Jeong-Tae;Nguyen, Khac-Duy;Huynh, Thanh-Canh
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.381-397
    • /
    • 2013
  • In this paper, wireless health monitoring of stay cables using piezoelectric strain sensors and a smart skin technique is presented. For the cables, tension forces are estimated to examine their health status from vibration features with consideration of temperature effects. The following approaches are implemented to achieve the objective. Firstly, the tension force estimation utilizing the piezoelectric sensor-embedded smart skin is presented. A temperature correlation model to recalculate the tension force at a temperature of interest is designed by correlating the change in cable's dynamic features and temperature variation. Secondly, the wireless health monitoring system for stay cables is described. A piezoelectric strain sensor node and a tension force monitoring software which is embedded in the sensor are designed. Finally, the feasibility of the proposed monitoring technique is evaluated on stay cables of the Hwamyung Grand Bridge in Busan, Korea.

A cable tension identification technology using percussion sound

  • Wang, Guowei;Lu, Wensheng;Yuan, Cheng;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.475-484
    • /
    • 2022
  • The loss of cable tension for civil infrastructure reduces structural bearing capacity and causes harmful deformation of structures. Currently, most of the structural health monitoring (SHM) approaches for cables rely on contact transducers. This paper proposes a cable tension identification technology using percussion sound, which provides a fast determination of steel cable tension without physical contact between cables and sensors. Notably, inspired by the concept of tensioning strings for piano tuning, this proposed technology predicts cable tension value by deep learning assisted classification of "percussion" sound from tapping a steel cable. To simulate the non-linear mapping of human ears to sound and to better quantify the minor changes in the high-frequency bands of the sound spectrum generated by percussions, Mel-frequency cepstral coefficients (MFCCs) were extracted as acoustic features to train the deep learning network. A convolutional neural network (CNN) with four convolutional layers and two global pooling layers was employed to identify the cable tension in a certain designed range. Moreover, theoretical and finite element methods (FEM) were conducted to prove the feasibility of the proposed technology. Finally, the identification performance of the proposed technology was experimentally investigated. Overall, results show that the proposed percussion-based technology has great potentials for estimating cable tension for in-situ structural safety assessment.

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

재긴장과 무선 모니터링이 가능한 유압식 케이블 접합부시스템의 실험에 대한 연구 (Experimental study of Hydraulic Cable Connection Systems with Re-tensioning and Wireless Monitoring)

  • 김민수;이기학;김성범;이성민;백기열
    • 한국공간구조학회논문집
    • /
    • 제11권2호
    • /
    • pp.71-79
    • /
    • 2011
  • 케이블 구조시스템의 경우 자기 평형 상태를 유지하기 때문에 장력이 손실된 특정 케이블을 재긴장을 하지 않으면 구조엔지니어가 요구한 하중보다 더 큰 하중이 다른 케이블에 전달되어 손상을 야기 할 수 있다. 또한, 턴버클을 이용한 재긴장 방법이 기존에 널리 적용되고 있지만 정확한 장력조절과 대구경 케이블에는 적절하지 못하고 인장재의 하중의 크기를 측정하는 것이 어렵다. 따라서 효과적으로 재긴장 할 수 있는 유압식 볼팅 접합부를 개발하고 인장력을 실시간으로 확인할 수 있는 모니터링 시스템을 적용하였다. 본 논문에서는 개발된 시스템의 현장 적용성 실험과 결과를 제시하였다.

Empirical formulas to estimate cable tension by cable fundamental frequency

  • Ren, Wei-Xin;Chen, Gang;Hu, Wei-Hua
    • Structural Engineering and Mechanics
    • /
    • 제20권3호
    • /
    • pp.363-380
    • /
    • 2005
  • The cable tension plays an important role in the construction, assessment and long-term health monitoring of cable structures. The cable vibration equation is nonlinear if cable sag and bending stiffness are included. The engineering implementation of a vibration-based cable tension evaluation is mostly carried out by the simple taut string theory. However, the simple theory may cause unacceptable errors in many applications since the cable sag and bending stiffness are ignored. From the practical point of view, it is necessary to have empirical formulas if they are simple and yet accurate. Based on the solutions by means of energy method and fitting the exact solutions of cable vibration equations where the cable sag and bending stiffness are respectively taken into account, the empirical formulas are proposed in the paper to estimate cable tension based on the cable fundamental frequency only. The applicability of the proposed formulas is verified by comparing the results with those reported in the literatures and with the experimental results carried out on the stay cables in the laboratory. The proposed formulas are straightforward and they are convenient for practical engineers to fast estimate the cable tension by the cable fundamental frequency.

Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements

  • Wang, Jun;Liu, Weiqing;Wang, Lu;Han, Xiaojian
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.939-957
    • /
    • 2015
  • In this paper, a new approach based on the continuum model is proposed to estimate the main cable tension force of suspension bridges from measured natural frequencies. This approach considered the vertical vibration of a main cable hinged at both towers and supported by an elastic girder and hangers along its entire length. The equation reflected the relationship between vibration frequency and horizontal tension force of a main cable was derived. To avoid to generate the additional cable tension force by sag-extensibility, the analytical solution of characteristic equation for anti-symmetrical vibration mode of the main cable was calculated. Then, the estimation of main cable tension force was carried out by anti-symmetric characteristic frequency vector. The errors of estimation due to characteristic frequency deviations were investigated through numerical analysis of the main cable of Taizhou Bridge. A field experiment was conducted to verify the proposed approach. Through measuring and analyzing the responses of a main cable of Taizhou Bridge under ambient excitation, the horizontal tension force of the main cable was identified from the first three odd frequencies. It is shown that the estimated results agree well with the designed values. The proposed approach can be used to conduct the long-term health monitoring of suspension bridges.

Tension estimation method using natural frequencies for cable equipped with two dampers

  • Aiko Furukawa;Kenki Goda;Tomohiro Takeichi
    • Structural Monitoring and Maintenance
    • /
    • 제10권4호
    • /
    • pp.361-379
    • /
    • 2023
  • In cable structure maintenance, particularly for cable-stayed bridges, cable safety assessment relies on estimating cable tension. Conventionally, in Japan, cable tension is estimated from the natural frequencies of the cable using the higher-order vibration method. In recent years, dampers have been installed on cables to reduce cable vibrations. Because the higher-order vibration method is a method for damper-free cables, the damper must be removed to measure the natural frequencies of a cable without a damper. However, cables on some cable-stayed bridges have two dampers: one on the girder side and another on the tower side. Notably, removing and reinstalling the damper on the tower side are considerably more time- and labor-intensive. This paper introduces a tension estimation method for cables with two dampers, using natural frequencies. The proposed method was validated through numerical simulation and experiment. In the numerical tests, without measurement error in the natural frequencies, the maximum estimation error among 100 models was 3.3%. With measurement error of 2%, the average estimation error was within 5%, with a maximum error of 9%. The proposed method has high accuracy because the higher-order vibration method for a damper-free cable still has an estimation error of 5%. The experimental verification emphasizes the importance of accurate damper modeling, highlighting potential discrepancies between existing damper design formula and actual damper behavior. By revising the damper formula, the proposed method achieved accurate cable tension estimation, with a maximum estimation error of approximately 10%.