References
- Casas, J.R. (1994), 'A combined method for measuring cable forces: The cable-stayed Alamillo Bridge', Spain. Struct. Eng. Int., 3, 235-240
- Chen, G. (1994), 'Practical formulas for estimation of cable tension by vibration method', M.Sc. Thesis, Fuzhou University
- Cunha, A., Caetano, E. and Delgado, R. (2001), 'Dynamic tests on large cable-stayed bridge', J. Bridge Eng., ASCE, 6, 54-62 https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(54)
- Humar, J.L. (1990), Dynamics of Structures. Prentice-Hall, Inc., Englewood Cliffs, N. J
- Irvine, H.M. (1981), Cable Structures. The MIT Press, Cambridge, Massachusetts, USA
- Irvine, H.M. and Caughey, T.K. (1974), 'The linear theory of free vibration of a suspended cable', Proc. Royal Society of London, England, Series A, 341, 299-315
- Leonard, J.W. (1998), Tension Structures. McGraw-Hill Book Company, New York
- Mehrabi, A.B. and Tabatabai, H. (1998), 'A unified finite difference formulation for free vibration of cables', J. Struct. Eng., ASCE, 124(11), 1313-1322 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1313)
- Ni, Y.Q., Ko, J.M. and Zheng, G. (2002), 'Dynamic analysis of large-diameter sagged cables taking in account flexural rigidity', J. Sound Vib., 257(2), 301-319 https://doi.org/10.1006/jsvi.2002.5060
- Russell, J.C. and Lardner, T.J. (1998), 'Experimental determination of frequencies and tension for elastic cables', J. Eng. Mech., ASCE, 124, 1067-1072 https://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1067)
- Starossek, U. (1991), 'Dynamic stiffuess matrix of sagging cable', J. Struct. Eng., ASCE, 117(12), 2815-2829
- Starossek, U. (1994), 'Cable dynamics - A review', Struct. Eng. Int., 3, 171-176
- Yen, W.H.P., Mehrabi, A.B. and Tabatabai, H. (1997), 'Estimation of stay cable tension using a non-destructive vibration technique', Building to Last: Proc. of the 15th Structures Congress, ASCE, 1, 503-507
- Zheng, G, Ko, J.M. and Ni, Y.Q. (2001), 'Multimode-based evaluation of cable tension force in cable-supported bridges', Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways 2001, SPIE, 4330, 511-522
- Zui, H., Shinke, T. and Namita, Y. (1996), 'Practical formulas for estimation of cable tension by vibration method', J. Struct. Eng., ASCE, 122(6), 651-656 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(651)
Cited by
- Recursive optimization method for monitoring of tension loss in cables of cable-stayed bridges vol.27, pp.15, 2016, https://doi.org/10.1177/1045389X15620043
- Real-time identification of time-varying tension in stay cables by monitoring cable transversal acceleration vol.21, pp.7, 2014, https://doi.org/10.1002/stc.1634
- Dynamic Brillouin Scattering–Based Condition Assessment of Cables in Cable-Stayed Bridges vol.22, pp.3, 2017, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001010
- Determination of cable tensions based on frequency differences vol.25, pp.2, 2008, https://doi.org/10.1108/02644400810855977
- New Method for Identifying Internal Forces of Hangers Based on Form-Finding Theory of Suspension Cable vol.22, pp.11, 2017, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001147
- Cable Force Calculation Using Vibration Frequency Methods Based on Cable Geometric Parameters vol.31, pp.4, 2017, https://doi.org/10.1061/(ASCE)CF.1943-5509.0001002
- Development and sensing properties study of FRP–FBG smart stay cable for bridge health monitoring applications vol.44, pp.4, 2011, https://doi.org/10.1016/j.measurement.2011.01.005
- New insights into coherence analysis with a view towards extracting structural natural frequencies under operational conditions vol.77, 2016, https://doi.org/10.1016/j.measurement.2015.08.038
- Cable Modal Parameter Identification. II: Modal Tests vol.135, pp.1, 2009, https://doi.org/10.1061/(ASCE)0733-9399(2009)135:1(51)
- Measured Frequency for the Estimation of Cable Force by Vibration Method vol.141, pp.2, 2015, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000890
- Analysis of a reversible flight control system response to atmospheric turbulence vol.112, pp.1128, 2008, https://doi.org/10.1017/S0001924000002025
- Vibration analysis of horizontal self-weighted beams and cables with bending stiffness subjected to thermal loads vol.329, pp.9, 2010, https://doi.org/10.1016/j.jsv.2009.11.018
- FBG force-testing ring for bridge cable force monitoring and temperature compensation vol.223, 2015, https://doi.org/10.1016/j.sna.2015.01.003
- Bayesian estimation of tension in bridge hangers using modal frequency measurements vol.3, pp.4, 2016, https://doi.org/10.12989/smm.2016.3.4.349
- Determination of cable force based on the corrected numerical solution of cable vibration frequency equations vol.50, pp.1, 2014, https://doi.org/10.12989/sem.2014.50.1.037
- Estimation of Cable Tension Force Independent of Complex Boundary Conditions vol.141, pp.1, 2015, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000836
- Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation vol.45, 2012, https://doi.org/10.1016/j.engstruct.2012.06.018
- A PSO Driven Intelligent Model Updating and Parameter Identification Scheme for Cable-Damper System vol.2015, 2015, https://doi.org/10.1155/2015/423898
- Multistep and Multiparameter Identification Method for Bridge Cable Systems vol.23, pp.1, 2018, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001145
- Unified Practical Formulas for Vibration-Based Method of Cable Tension Estimation vol.18, pp.3, 2015, https://doi.org/10.1260/1369-4332.18.3.405
- Estimation of tensile force in tie-rods using a frequency-based identification method vol.329, pp.11, 2010, https://doi.org/10.1016/j.jsv.2009.12.009
- Vibration Analysis for Monitoring of Ancient Tie-Rods vol.2017, 2017, https://doi.org/10.1155/2017/7591749
- Monitoring of the Internal Force of the Flexible Components by Vibration Method vol.45, pp.1, 2017, https://doi.org/10.1520/JTE20160138
- Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests vol.317, pp.1-2, 2008, https://doi.org/10.1016/j.jsv.2008.02.048
- Detection of Tension Loss in Cables of Cable-Stayed Bridges by Distributed Monitoring of Bridge Deck Strains vol.142, pp.6, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001463
- A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions vol.409, 2017, https://doi.org/10.1016/j.jsv.2017.07.043
- Determination of Stay-Cable Forces Using Highly Mobile Vibration Measurement Devices vol.23, pp.2, 2018, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001166
- Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization vol.77, 2017, https://doi.org/10.1016/j.ultras.2017.01.012
- A single heavy load airdrop and its effect on a reversible flight control system vol.80, pp.4, 2008, https://doi.org/10.1108/00022660810882764
- Estimation of Tension in Cables with Intermediate Elastic Supports Using Finite-Element Method vol.16, pp.5, 2011, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000192
- Tension Force and Structural Parameter Identification of Bridge Cables vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.983
- Practical Formula for Cable Tension Estimation by Vibration Method vol.17, pp.1, 2012, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000200
- Cable Modal Parameter Identification. I: Theory vol.135, pp.1, 2009, https://doi.org/10.1061/(ASCE)0733-9399(2009)135:1(41)
- Stay Force Estimation in Cable-Stayed Bridges Using Stochastic Subspace Identification Methods vol.22, pp.9, 2017, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001091
- Real-Time Output-Only Identification of Time-Varying Cable Tension from Accelerations via Complexity Pursuit vol.142, pp.1, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001337
- Genetic Algorithm-based tension identification of hanger by solving inverse eigenvalue problem vol.22, pp.6, 2014, https://doi.org/10.1080/17415977.2013.848432
- Stay Cable Tension Estimation of Cable-Stayed Bridges Using Genetic Algorithm and Particle Swarm Optimization vol.22, pp.10, 2017, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001130
- Free linear vibrations of cables under thermal stress vol.327, pp.1-2, 2009, https://doi.org/10.1016/j.jsv.2009.07.005
- On the effects of uniform temperature variations on stay cables vol.5, pp.5, 2015, https://doi.org/10.1007/s13349-015-0140-9
- Dynamic behavior monitoring and damage evaluation for arch bridge suspender using GFRP optical fiber Bragg grating sensors vol.44, pp.4, 2012, https://doi.org/10.1016/j.optlastec.2011.10.014
- Transverse Oscillation of Precise Cable Drive System vol.522, pp.1662-9795, 2012, https://doi.org/10.4028/www.scientific.net/KEM.522.332
- Estimation Method of Cable Tension Based on Iterative Algorithm and Optimization Algorithm vol.353-356, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.353-356.3202
- Estimation of Tension Force in Short Hangers Using Added Mass Method vol.658, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.658.124
- A Sensitivity Analysis of Cable Parameters on Tension of a Suspended Cable under Combination Resonances pp.1793-6764, 2018, https://doi.org/10.1142/S0219455419500251
- Determining Time Variation of Cable Tension Forces in Suspended Bridges Using Time-Frequency Analysis vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/1053232
- Identification of the tension force in cables with insulators vol.54, pp.1-2, 2019, https://doi.org/10.1007/s11012-018-00941-w
- Automated Modal Analysis for Tracking Structural Change during Construction and Operation Phases vol.19, pp.4, 2019, https://doi.org/10.3390/s19040927
- NONLINEAR DYNAMIC ANALYSIS OF A CABLE UNDER FIRST AND SECOND ORDER PARAMETRIC EXCITATIONS vol.18, pp.4, 2005, https://doi.org/10.3846/13923730.2012.702994
- Experimental study of vibration characteristics of FRP cables based on Long-Gauge strain vol.63, pp.6, 2005, https://doi.org/10.12989/sem.2017.63.6.735
- A novel tension estimation approach for elastic cables by elimination of complex boundary condition effects employing mode shape functions vol.166, pp.None, 2005, https://doi.org/10.1016/j.engstruct.2018.03.070
- Validation value of cable force using the accelerometer vol.195, pp.None, 2005, https://doi.org/10.1088/1755-1315/195/1/012022
- Tension Identification of Suspenders with Supplemental Dampers for Through and Half-Through Arch Bridges under Construction vol.145, pp.3, 2005, https://doi.org/10.1061/(asce)st.1943-541x.0002255
- Tension estimation of hangers with shock absorber in suspension bridge using finite element method vol.21, pp.3, 2005, https://doi.org/10.21595/jve.2018.20054
- Cable Tension Monitoring Based on the Elasto-Magnetic Effect and the Self-Induction Phenomenon vol.12, pp.14, 2019, https://doi.org/10.3390/ma12142230
- Research on characteristic function for cable inverse analysis based on dynamic stiffness theory and its application vol.194, pp.None, 2019, https://doi.org/10.1016/j.engstruct.2019.05.062
- PVDF Nanofiber Sensor for Vibration Measurement in a String vol.19, pp.17, 2005, https://doi.org/10.3390/s19173739
- Tension Force Estimation of Cables with Two Intermediate Supports vol.20, pp.3, 2005, https://doi.org/10.1142/s0219455420500327
- Controlling deflection of long steel I-shaped girder bridge using two V-shaped pre-tensioning cables vol.27, pp.2, 2020, https://doi.org/10.1007/s11771-020-4317-y
- Image‐based back analysis for tension estimation of suspension bridge hanger cables vol.27, pp.4, 2020, https://doi.org/10.1002/stc.2508
- Identification of instantaneous tension of bridge cables from dynamic responses: STRICT algorithm and applications vol.142, pp.None, 2005, https://doi.org/10.1016/j.ymssp.2020.106729
- Intelligent parameter identification for bridge cables based on characteristic frequency equation of transverse dynamic stiffness vol.39, pp.3, 2005, https://doi.org/10.1177/1461348418814617
- Variational Mode Decomposition Based Time-Varying Force Identification of Stay Cables vol.11, pp.3, 2005, https://doi.org/10.3390/app11031254
- Frequency-based tension assessment of an inclined cable with complex boundary conditions using the PSO algorithm vol.79, pp.5, 2005, https://doi.org/10.12989/sem.2021.79.5.619
- Fully Automated and Robust Cable Tension Estimation of Wireless Sensor Networks System vol.21, pp.21, 2021, https://doi.org/10.3390/s21217229