• Title/Summary/Keyword: cable stayed structure

Search Result 130, Processing Time 0.021 seconds

Hybrid Control of a Benchmark Cable-Stayed Bridge Considering Nonlinearity of a Lead Rubber Bearing (납고무받침의 비선형성을 고려한 벤치마크 사장교의 복합제어)

  • Park, Kyu-Sik;Jung, Hyun-Jo;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.51-63
    • /
    • 2002
  • This paper presents a hybrid control strategy for seismic protection of a benchmark cable-stayed bridge, which is provided as a testbed structure for the development of strategies for the control of cable-stayed bridges. This benchmark problem considers the cable-stayed bridge that is scheduled for completion in Cape Girardeau, Missouri, USA in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi river. Based on detailed drawings of this cable-stayed bridge, a three-dimensional linearlized evaluation model has been developed to represent the complex behavior of the bridge. A set of eighteen evaluation criteria has been developed to evaluate the capabilities of each control strategy. In this study, a hybrid control system is composed of a passive control system to reduce the earthquake-induced forces in the structure and an active control system to further reduce the bridge responses, especially deck displacements. Conventional base isolation devices such as lead rubber bearings are used for the passive control design and Bouc-Wen model is used to simulate the nonlinear behavior of these devices For the active control design, ideal hydraulic actuators are used and on $H_2$/LQG control algorithm is adopted. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective compared to that of the passive control strategy and slightly better than that of the active control strategy. The hybrid control method is also more reliable than the fully active control method due to the passive control part. Therefore, the proposed hybrid control strategy can effectively be used to seismically excited cable-stayed bridges.

Effects of Geometric Characteristics on the Ultimate Behavior of Steel Cable-stayed Bridges (기하학적 특성이 강사장교의 극한 거동에 미치는 영향)

  • Kim, Seungjun;Shin, Do Hyoung;Choi, Byung Ho;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.327-336
    • /
    • 2012
  • This study presents the effects of various geometric properties on the ultimate behavior of steel cable-stayed bridges. In general, cable-stayed bridges are well known as a very efficient structural system, because of those geometric characteristics, but at the same time, the structure also shows complex structural behavior including various nonlinearities which significantly affect to the ultimate behavior of the structure. In this study, the effects of various geometric properties of main members on the ultimate behavior under specific live load cases, which had been studied in previous studies, were investigated using a rational analytical method. In this parametric study, sectional dimensions of main members were considered as main geometric parameters. For the rational ultimate analysis under specific live load cases, the 2-step analysis method, which contains initial shape analysis and live load analysis, was used. As the analysis model, 920.0 m long steel cable-stayed bridges were used and two different types of cable arrangement were considered to study the effect of the cable arrangement types. Through this study, the effects of various geometric properties on the characteristics of the ultimate behavior of steel cable-stayed bridges were intensively investigated.

Modal Parameter variation of Steel Cable-stayed Bridge Considering Solar Radiation (일사에 의한 온도변화에 따른 강사장교의 동적특성 변화)

  • Kim Sang-Hyo;Jo Kwang-Il;Park Ju-Yang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1040-1047
    • /
    • 2006
  • Bridges are exposed to constantly changing weather conditions and temperature. The temperature change is induced by a change in atmospheric temperature and solar radiation. Atmospheric temperature change acts on the whole structure. Thus, it is relatively easy to consider in the design. Solar radiation, however, causes un-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Un-uniform temperature distribution causes a torsional moment in bridge section and a deformation of bridge. A deformation can make differences of dynamic and static behavior of bridge. In this study, the method for analysis of static and dynamic behavior considering deformation and changes of material properties due to temperature variation was developed. By this method, it is found from dynamic analysis results that the change of frequency in analysis model is similar with test results of public used cable-stayed bridge. When a temperature goes down, a frequency goes up. And it is found that the change of frequency is affected by the change of material properties.

  • PDF

Performance Evaluation of Seismic Vibration Control of Asymmetrical Cable-Stayed Bridge Using MR Damper (MR 댐퍼를 이용한 비대칭 사장교의 지진 진동제어 성능평가)

  • Heo, Gwanghee;Kim, Chunggil;Gong, Yeong I
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.729-737
    • /
    • 2014
  • A study has been carried out that effectively controls the vibration of asymmetric cable-stayed bridges caused by earthquakes with MR dampers. In order to enhance the practical serviceability of MR dampers, an asymmetric cable-stayed bridge structure has been designed and produced, and a MR damper has been produced so as to have this bridge structure controlled appropriately. An experiment that controls vertical and horizontal vibrations has been carried out by exciting the asymmetric cable-stayed bridge in the horizontal direction with the El-centro seismic wave. The control performance of the MR damper has been evaluated under the five control conditions in the experiments of vibration control in each direction. As a result of the experiment, MR dampers were proved to control vibrations more effectively when either Lyapunov control algorithm or Clipped-optimal control algorithm was used to control vibrations of the asymmetric cable-stayed bridge caused by earthquakes. In addition, different controlling effects were found in vibration controls in vertical and horizontal directions due to the asymmetry of the structure and the horizontal excitation. With such controlling effects, semi-active MR dampers are evaluated to effectively control vibrations caused by earthquakes in flexible and asymmetric structures such as asymmetric cable-stayed bridges.

Probabilistic Structural Safety Assessment Considering the Initial Shape and Non-linearity of Steel Cable-Stayed Bridges (강사장교의 초기형상과 비선형성을 고려한 확률론적 구조안전성 평가)

  • Bang, Myung-Seok;Han, Sung-Ho;Lee, Woo-Sang;Lee, Chin-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In this study, the advanced numerical algorithm is developed which can performed the static and dynamic stochastic finite element analysis by considering the effect of uncertainties included in the member stiffness of steel cable-stayed bridges and seismic load. After conducting the linear and nonlinear initial shape analysis, the advanced numerical algorithm is the assessment tool which can performed structural the response analysis considering the static linearity and non-linearity of before or after induced intial tensile force, and examined the reliability assessment more efficiently. The verification of the developed numerical algorithm is evaluated by analyzing the regression analysis and coefficient of correlation using the direct monte carlo simulation. Also, the dynamic response characteristic and coefficient of variation of the steel cable-stayed bridge is calculated by considering the uncertainty of random variables using the developed numerical algorithm. In addition, the quantitative structural safety of the steel cable-stayed bridges is evaluated by conducting the reliability assessment based upon the dynamic stochastic finite element analysis result.

A method to evaluate the frequencies of free transversal vibrations in self-anchored cable-stayed bridges

  • Monaco, Pietro;Fiore, Alessandra
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.125-146
    • /
    • 2005
  • The objective of this paper is setting out, for a cable-stayed bridge with a curtain suspension, a method to determine the modes of vibration of the structure. The system of differential equations governing the vibrations of the bridge, derived by means of a variational formulation in a nonlinear field, is reported in Appendix C. The whole analysis results from the application of Hamilton's principle, using the expressions of potential and kinetic energies and of the virtual work made by viscous damping forces of the various parts of the bridge (Monaco and Fiore 2003). This paper focuses on the equation concerning the transversal motion of the girder of the cable-stayed bridge and in particular on its final form obtained, restrictedly to the linear case, neglecting some quantities affecting the solution in a non-remarkable way. In the hypotheses of normal mode of vibration and of steady-state, we propose the resolution of this equation by a particular method based on a numerical approach. Respecting the boundary conditions, we derive, for each mode of vibration, the corresponding frequency, both natural and damped, the shape-function of the girder axis and the exponential function governing the variability of motion amplitude in time. Finally the results so obtained are compared with those deriving from the dynamic analysis performed by a finite elements calculation program.

FVT Signal Processing for Structural Identification of Cable-stayed Bridge (사장교의 구조식별을 위한 가진실험 데이터분석)

  • 이정휘;김정인;윤자걸
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.923-929
    • /
    • 2004
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neuralnetwork. 7he considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck. and vortical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used for the structural identification using arbitrarily added masses to the bridge.

FVT Signal Processing for Structural Identification of Cable-Stayed Bridge (사장교의 구조식별을 위한 가진실험 데이터분석)

  • 윤자걸;이정휘;김정인
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.619-623
    • /
    • 2003
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neural network. The considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck, and vertical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used fur the structural identification using arbitrarily added masses to the bridge.

  • PDF

Damage Detection in Cable-Stayed Bridges Using Vibration Modes (진동모드를 이용한 사장교의 손상 검색)

  • Kong, Min-Sik;Ka, Hoon;Son, Seok-Ho;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.113-123
    • /
    • 2006
  • As Cable-stayed bridges were constructed to the long span, they have become bigger and had weaknesses to vibration induced by earthquake, wind and vehicle loads. Structural damages induced by these loads affect the characteristic of vibration modes of structure. Damage detection of cable-stayed bridges by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. Also it requires very much time and cost. So in this study, the investigation of characteristic change of structural action and the detection of structural damages is analyzed by using characteristic properties of vibration mode before and after structural damage.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.