Damage Detection in Cable-Stayed Bridges Using Vibration Modes

진동모드를 이용한 사장교의 손상 검색

  • 공민식 (서울시립대학교 토목공학과) ;
  • 가훈 (서울시립대학교 토목공학과) ;
  • 손석호 ((주) 동성엔지니어링 구조부) ;
  • 임성순 (서울시립대학교 토목공학과)
  • Received : 2006.02.09
  • Published : 2006.11.30

Abstract

As Cable-stayed bridges were constructed to the long span, they have become bigger and had weaknesses to vibration induced by earthquake, wind and vehicle loads. Structural damages induced by these loads affect the characteristic of vibration modes of structure. Damage detection of cable-stayed bridges by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. Also it requires very much time and cost. So in this study, the investigation of characteristic change of structural action and the detection of structural damages is analyzed by using characteristic properties of vibration mode before and after structural damage.

사장교가 장경간으로 시공됨에 따라 대형화 되고 지진하중, 풍하중 및 차량하중 등 동적 하중에 의해 유발되는 진동현상에 취약한 단점이 나타난다. 이러한 하중 등에 의해 발생된 구조 손상은 구조물의 진동모드 특성에 영향을 미치게 된다. 기존의 정밀안전진단 기술을 이용하여 사장교의 구조 손상을 검색하고 평가하는 것은 상당한 비용과 시간이 소요될 뿐만 아니라 전체적인 구조거동 특성의 변화를 발견하기 어려울 것이다. 따라서 본 연구는 사장교에 대하여 구조손상 전의 진동모드 특성치와 구조손상 후의 진동모드 특성치를 이용하여 구조거동 특성의 변화를 검토하고 구조손상 검색을 수행하였다.

Keywords

References

  1. A. K. Pandey and M. Biswas, Damage Detection in Structures Using Changes in Flexibility, Journal of Sound and Vibration, 169(1), 3-17, 1994. https://doi.org/10.1006/jsvi.1994.1002
  2. A. Messina, E. J. Williams and T. Contursi, Structural Damage Detection by a Sensitivity and Statistical -Based Method, Journal of Sound and Vibration, 216(5), 791-808, 1998. https://doi.org/10.1006/jsvi.1998.1728
  3. Cawley P, Adams RD. The Location of Defects in Structures from Measurements of Natural Frequencies. J.Strain Analysism, Vol. 14, 49-57. 1979. https://doi.org/10.1243/03093247V142049
  4. D. J. Ewins, Modal Testing : Theory, Practice and Application, 2nd Ed., Research Studies Press, 2000.
  5. John F. Fleming, Nonlinear Static Analysis of Cable-Stayed Bridge Structures, Computers & Structures, Vol. 10, 621-635, 1979. https://doi.org/10.1016/0045-7949(79)90006-3
  6. J. H. Ernst, Der E-modul von seilen under Berucksichtigung des durchhanges, Der Bauingenieur 1965.
  7. P. H. Wang, T. C. Tseng and C. G. Yang, Initial Shape of Cable-Stayed Brides, Computer & Structures, Vol. 47, 111-123, 1993. https://doi.org/10.1016/0045-7949(93)90284-K
  8. Jeong-Tae Kim, Yeon-Sun Ryu, Hyun-Man Cho and Norris Stubbs, Damage Identification in Beam-Type Structures: Frequency-Based method vs Mode-Shape-Based Method, Engineering Structures, Vol. 25, 57-67, 2003. https://doi.org/10.1016/S0141-0296(02)00118-9
  9. J. T. Kim and N. Stubbs, Crack Detection in Beam-Type Structures using Frequency Data, Journal of Sound and Vibration, 259(1), 145-160, 2003. https://doi.org/10.1006/jsvi.2002.5132
  10. M.H. Irvine, Cable Structure, MIT Press, 1981.
  11. P. H. Wang and C. G. Yang, Parametric Studies on Cable-Stayed Brides, Computers & Structures, Vol. 60, 243-260, 1996. https://doi.org/10.1016/0045-7949(95)00382-7
  12. T. Contursi, A. Messina and E. J. Williams, A Multiple-Damage Location Assurance Criterion Based on Natural Frequency Changes, Journal of Vibration and Control, Vol. 4, 619-633, 1998. https://doi.org/10.1177/107754639800400505
  13. West, W.M, Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen, Proceedings of the Air Force Conference on Aircraft Structural Integrity, 1984.
  14. W. McGuire, R. H. Gallagher, R. D. Ziemian, Matrix Structural Analysis, 2nd ed., John Wiley & Sons, 2000.
  15. W.McGuire, R. H.Gallagher, R. D. Ziemian, Marix Sturctural Anlaysis, 2nd ed., John Wiley & Sons, 2000.