• 제목/요약/키워드: cable bridge

검색결과 748건 처리시간 0.021초

GNSS를 이용한 사장교의 동특성 평가 (Dynamic Characteristics of a Cable-stayed Bridge Using Global Navigation Satellite System)

  • 박종칠;길흥배;강상규;임채운
    • 대한토목학회논문집
    • /
    • 제30권4A호
    • /
    • pp.375-382
    • /
    • 2010
  • 본 논문은 GNSS 데이터를 이용한 사장교의 고유진동수와 모드형상 추출을 다루고 있다. 서해대교 사장교에 설치된 6개의 GNSS 측정점으로부터 응답신호를 얻어 동특성 분석에 사용하였다. 측정된 GNSS 신호에 대해 정규화 과정과 버터워스 필터를 사용하여 관심영역의 신호를 분리한 뒤, 이중 미분을 수행하여 가속도 데이터로 변환하였다. 변환된 가속도에 대한 FFT 분석을 통해 5개의 고유진동수를 추출하였으며, 이를 기존 연구결과와 비교 검증하였다. 또한 TDD기법을 이용하여 GNSS 데이터로부터 교량의 모드형상까지 추출할 수 있었다.

Particle filter approach for extracting the non-linear aerodynamic damping of a cable-stayed bridge subjected to crosswind action

  • Aljaboobi Mohammed;Shi-Xiong Zheng;Al-Sebaeai Maged
    • Wind and Structures
    • /
    • 제38권2호
    • /
    • pp.119-128
    • /
    • 2024
  • The aerodynamic damping is an essential factor that can considerably affect the dynamic response of the cable-stayed bridge induced by crosswind load. However, developing an accurate and efficient aerodynamic damping model is crucial for evaluating the crosswind load-induced response on cable-stayed bridges. Therefore, this study proposes a new method for identifying aerodynamic damping of the bridge structures under crosswind load using an extended Kalman filter (EKF) and the particle filter (PF) algorithm. The EKF algorithm is introduced to capture the aerodynamic damping ratio. PF technique is used to select the optimal spectral representation of the noise. The effectiveness and accuracy of the proposed solution were investigated through full-scale vibration measurement data of the crosswind-induced on the bridge's girder. The results show that the proposed solution can generate an efficient and robust estimation. The errors between the target and extracted values are around 0.01mm and 0.003^o, respectively, for the vertical and torsional motion. The relationship between the amplitude and the aerodynamic damping ratio is linear for small reduced wind velocity and nonlinear with the increasing value of the reduced wind velocity. Finally, the results show the influence of the level of noise.

제2돌산대교와 세풍대교의 공사비 분석 (Analysis of Construction Cost of the Second-Dolsan Bridge and the Sepung Bridge)

  • 서영재;이경재;김재홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.21-22
    • /
    • 2010
  • 사장교 형식 중에서 가장 경제적인 콘크리트 사장교가 최근 많이 건설되고 있다. 이 논문에서는 현재 시공 중인 콘크리트 사장교인 제2돌산대교와 세풍대교의 공사비를 비교 분석하여 콘크리트 사장교의 공사비 특성을 조사하였다.

  • PDF

PCCAP을 이용한 장대 사장교의 버페팅 해석 (Beffeting Analysis of Long Span Cable-stayed Bridge using PCCAP)

  • 유원진;이석용;남효승;이완수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.202-208
    • /
    • 2003
  • In this study, a time domain analysis is presented for investigation on the buffeting response of cable-stayed bridge during both erection and completion stages. The main span length and width of deck are 520 m and 15.1m, each. Since the ratio of span over width is 34.44, aerodynamic stability of the bridge during erection is expected to dominate the safety of the bridge in construction stage. Several conclusions regarding different construction stages and temporary wind cables are obtained.

  • PDF

영상처리기법을 이용한 장대교량 케이블의 장력 측정 (Cable Tension Measurement of Long-span Bridges Using Vision-based System)

  • 김성완;정진환;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.115-123
    • /
    • 2018
  • 케이블지지교량에서 케이블은 하중을 지지하는 주요 부재로, 케이블 장력은 교량의 건전성과 안전도 평가에 있어서 매우 중요한 변수이다. 케이블의 장력을 추정하는 기법으로, 로드셀 및 유압잭 등을 이용하여 케이블의 응력을 직접 측정하는 직접법과 케이블의 형상조건과 계측된 동특성을 활용하여 장력을 역산하는 진동법이 가장 많이 활용되고 있다. 최근 들어 케이블 내부 강재의 응력변화로 인하여 유발되는 자기장 변화를 탐지하는 EM 센서의 연구 및 활용이 증가하고 있다. 본 연구에서는 리프트오프 테스트, EM 센서 및 진동법(Vision-based System, Accelerometer)을 적용하여 장력을 측정하고 그 결과를 비교 분석하였다.

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

Damage detection of a cable-stayed bridge based on the variation of stay cable forces eliminating environmental temperature effects

  • Chen, Chien-Chou;Wu, Wen-Hwa;Liu, Chun-Yan;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.859-880
    • /
    • 2016
  • This study aims to establish an effective methodology for the detection of instant damages occurred in cable-stayed bridges with the measurements of cable vibration and structural temperatures. A transfer coefficient for the daily temperature variation and another for the long-term temperature variation are firstly determined to eliminate the environmental temperature effects from the cable force variation. Several thresholds corresponding to different levels of exceedance probability are then obtained to decide four upper criteria and four lower criteria for damage detection. With these criteria, the monitoring data for three stay cables of Ai-Lan Bridge are analyzed and compared to verify the proposed damage detection methodology. The simulated results to consider various damage scenarios unambiguously indicate that the damages with cable force changes larger than ${\pm}1%$ can be confidently detected. As for the required time to detect damage, it is found that the cases with ${\pm}2%$ of cable force change can be discovered in no more than 6 hours and those with ${\pm}1.5%$ of cable force change can be identified in at most 9 hours. This methodology is also investigated for more lightly monitored cases where only the air temperature measurement is available. Under such circumstances, the damages with cable force changes larger than ${\pm}1.5%$ can be detected within 12 hours. Even though not exhaustively reflecting the environmental temperature effects on the cable force variation, both the effective temperature and the air temperature can be considered as valid indices to eliminate these effects at high and low monitoring costs.

Aerodynamic performance evaluation of different cable-stayed bridges with composite decks

  • Zhou, Rui;Ge, Yaojun;Yang, Yongxin;Du, Yanliang;Zhang, Lihai
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.699-713
    • /
    • 2020
  • The aerodynamic performance of long-span cable-stayed bridges is much dependent on its geometrical configuration and countermeasure strategies. In present study, the aerodynamic performance of three composite cable-stayed bridges with different tower configurations and passive aerodynamic countermeasure strategies is systematically investigated by conducting a series of wind tunnel tests in conjunction with theoretical analysis. The structural characteristics of three composite bridges were firstly introduced, and then their stationary aerodynamic performance and wind-vibration performance (i.e., flutter performance, VIV performance and buffeting responses) were analyzed, respectively. The results show that the bridge with three symmetric towers (i.e., Bridge I) has the lowest natural frequencies among the three bridges, while the bridge with two symmetric towers (i.e., Bridge II) has the highest natural frequencies. Furthermore, the Bridge II has better stationary aerodynamic performance compared to two other bridges due to its relatively large drag force and lift moment coefficients, and the improvement in stationary aerodynamic performance resulting from the application of different countermeasures is limited. In contrast, it demonstrates that the application of both downward vertical central stabilizers (UDVCS) and horizontal guide plates (HGP) could potentially significantly improve the flutter and vortex-induced vibration (VIV) performance of the bridge with two asymmetric towers (i.e., Bridge III), while the combination of vertical interquartile stabilizers (VIS) and airflow-depressing boards (ADB) has the capacity of improving the VIV performance of Bridge II.

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • ;;이지용;신성우;김정태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF

베트남 밤콩 사장교의 설계 (Design of Vam Cong Cable Stayed Bridge in Vietnam)

  • 이용진;강정운;배상운;윤연석;노병철
    • 한국건설순환자원학회논문집
    • /
    • 제1권2호
    • /
    • pp.120-127
    • /
    • 2013
  • 밤콩 사장교는 메콩강 삼각주 지역 연결 사업의 일환으로 메콩강 하류의 꾸롱 삼각주에 위치하고 있으며, 중앙경간 450m의 사장교로 설계되었다. 왕복 4차선으로 구성된 강합성 보강형과 멀티 스트랜드 방식의 케이블을 적용하였으며, 개선된 H형 주탑과 현장타설 콘크리트 말뚝 기초로 구성되어 있다. 주탑, 프리캐스트 콘크리트 바닥판 그리고 현장타설 콘크리트 말뚝에는 고강도 콘크리트를 적용하여 구조적 안정성을 확보하였다. 본 고에서는 밤콩 사장교의 설계에 적용된 설계기준 및 주요 설계 특징을 설명하고자 한다.