• 제목/요약/키워드: cDNA microarray analysis

검색결과 226건 처리시간 0.02초

Paw Edema was Reduced in Carrageenan Induced Acute Inflammation in Stat4 Deficient Mice

  • Zheng, Long-Tai;Baik, Haing-Woon;Lee, Seong-Kyu;Cho, Jeong-Je;Park, Cheung-Seog;Hong, Mee-Suk;Chung, Joo-Ho;Yim, Sung-Vin
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.257-261
    • /
    • 2006
  • Signal transducer and activator of transcription 4 (STAT4) is one of the important mediators in generating inflammation and immune responses. To address the role of Stat4 in carrageenan induced acute inflammation, we performed paw edema measurement and 7.4 k mouse cDNA microarray analysis in carrageenan induced acute inflammation in Stat4 knockout (-/-) mice. Male BALB/c (n=8) and Stat4 -/- (n=5) were used and paw edema was induced with injection of $30\;{\mu}L$ of 1% carrageenan into plantar surface of right hind paw. Next, we isolated the mRNA in mouse whole brain and analyzed cDNA microarray profiles for the changes of the brain expression in Stat4 -/- mice. Interestingly, the increase in paw volume of Stat4 -/- mice was reduced by about 30% as compared to that of wild type. The cDNA microarray analysis revealed the altered expressions of several cytokines (Tnf, Il6, and Il4) and pain-associated proteins (Ptgs2, Gabra6, and Gabbr1) in Stat4 -/- mice. Our results suggest that Stat4 may be related to the inhibitory responses on carrageenan induced acute inflammation.

Functional Gene Analysis for the Protection of Male Germ Cell Injury Induced by Busulfan Treatment using cDNA Microarray Analysis

  • 최윤정;옥도원;황규찬;김진회
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.21-21
    • /
    • 2003
  • Male germ cell apoptosis has been extensively explored in rodent. In contrast, very little is known about their susceptibility to apoptosis stimuli of developing germ cell stages at the time when germ cell depletion after busulfan treatment occurs. Furthermore, it is still unanswered how spermatogonial stem cells are resistant to busulfan treatment. We examined the change of gene expression in detail using cDNA microarray analysis of mouse testis treated with busulfan. A subtoxic dose of busulfan (40mg/kg of body weight) transiently increased 228 mRNA levels among of the 8000 genes analyzed. TagMan analysis confirmed that the mRNA levels such as defensive protein, support protein, enzymatic protein, transport protein, and hormonal protein were rapidly increased. These results were re-confirmed by real-time PCR analysis. However, the expression levels of these genes induced by busulfan treatment were significantly reduced in control testis, indicating that both of male germ cells and somatic cells after busulfan treatment induces self-defense mechanism for protection of testicular cell death. Among them, we conclude that defense proteins play a key role in testis injury induced by busulfan.

  • PDF

DNA 마이크로어레이를 이용한 내분비장애물질 노출지표 개발 (Development of Exposure Biomarkers for Endocrine Disrupting Chemicals Using DNA Microarray)

  • 양미희
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권4호통권51호
    • /
    • pp.327-332
    • /
    • 2005
  • 장기간 노출 시 발암 등 인체 유해성을 갖는 환경유래 내분비장애물질(endocrine disrupting chemicals, EDCs)에 대한 선택적이고 민감한 노출지표를 개발하기 위하여 본 연구에서는 DNA microarray를 이용하였다. 피험자는 아직 특별한 질환을 갖지 않는 18세 이상 연령, 성을 맞춘 EDCs고농도 노출군(N = 16)과 저농도군(N = 16)으로 구성되었다. 노출정도 구분은 10년 이상 거주지가 K산업폐기물 소각장과 2.5 km 반경 내, 외 인지에 따라 고노출군,저노출군으로 구분하였다. 피험자의 말초혈에서 total RNA를 분리, 각 군당 B인씩 pool로 cDNA를 합성하여 oligonucleotide DNA 칩에 적용하였다. 유전자발현의 차이를 GenePixPro 4.0 software를 이용하여 분석하였다. 총 3장의 칩을 이용하여 공통적으로 저노출군보다 고노출군에서 2배 이상 발현의 증가를 보인 유전자는 plasminogen activator(PLAT)등 12종이 관찰되었고, l/2이하로 발현의 감소를 보인 유전자는 kallikrein 3 (KLK3)등 29종이었다. 이 들 유전자는 PLAT등 면역계 반응에 관여하는 유전자 및 apoptosis, transport, G protein, chromatin, 암화, 발생 (development), 대사 등에 관여하는 유전자들이었다. 그러므로 KLK3등 본 연구에서 발굴한 유전자는 향후 확대된 인구에서 본 연구 결과의 확인을 통하여 EDCs특이적 노출지표로써, 나아가 암 등 EDCs관련 질병의 기전 및 병인학을 구명하는데 이용가치가 높다고 사료된다.

DNA Microarray Analysis of Methylprednisolone Inducible Genes in the PC12 Cells

  • ;;;;권오유
    • 대한의생명과학회지
    • /
    • 제15권3호
    • /
    • pp.261-263
    • /
    • 2009
  • Methylprednisolone is a synthetic glucocorticoid which is usually taken intravenously for many neurosurgical diseases which cause edema including brain tumor, and trauma including spinal cord injury. Methylprednisolone reduces swelling and decreases the body's immune response. It is also used to treat many immune and allergic disorders, such as arthritis, lupus, psoriasis, asthma, ulcerative colitis, and Crohn's disease. To identify genes expressed during methylprednisolone treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up- or down-regulated genes) which are methylprednisolone differentially expressed in neurons. Lipocalin 3 is the gene most significantly increased among 772 up-regulated genes (more than 2 fold over-expression) and Aristaless 3 is the gene most dramatically decreased among 959 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Fgb, Thbd, Cfi, F3, Kngl, Serpinel, C3, Tnfrsf4 and Il8rb are involved stress-response gene, and Nfkbia, Casp7, Pik3rl, I11b, Unc5a, Tgfb2, Kitl and Fgf15 are strongly associated with development. Cell cycle associated genes (Mcm6, Ccnb2, Plk1, Ccnd1, E2f1, Cdc2a, Tgfa, Dusp6, Id3) and cell proliferation associated genes (Ccl2, Tnfsf13, Csf2, Kit, Pim1, Nr3c1, Chrm4, Fosl1, Spp1) are down-regulated more than 2 times by methylprednisolone treatment. Among the genes described above, 4 up-regulated genes are confirmed those expression by RT-PCR. We found that methylprednisolone is related to expression of many genes associated with stress response, development, cell cycle, and cell proliferation by DNA microarray analysis. However, We think further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by methylprednisolone. The resulting data will give the one of the good clues for understanding of methylprednisolone under molecular level in the neurons.

  • PDF

Environmental Pollution and Gene Expression: Dioxin

  • Kim, Ki-Nam;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.78-86
    • /
    • 2005
  • Dioxins, especially 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin), are ubiquitous environmental contaminants. TCDD is known that it has toxic effects in animals and humans, including chloracne, immune, reproductive and developmental toxicities, carcinogenicity, wasting syndrome and death. TCDD induces a broad spectrum of biological responses, including disruption of normal hormone signaling pathways, reproductive and developmental defects, immunotoxicity, liver damage, wasting syndrome and cancer. Many researches showed that TCDD induces gene expression of transcriptional factors related cell proliferation, signal transduction, immune system and cell cycle arrest at molecular and cellular levels. These toxic actions of TCDD are usually mediated with AhR (receptor, resulted from cell culture, animal and clinical studies). cDNA microarray can be used as a highly sensitive and informative marker for toxicity. Additionally, microarray analysis of dioxin-toxicity is able to provide an opportunity for the development of candidate bridging biomarkers of dioxin-toxicity. Through microarray technology, it is possible to understand the therapeutic effects of agonists within the context of toxic effects, classify new chemicals as to their complete effects on biological systems, and identify environmental factors that may influence safety.

Molecular Cloning, Identification and Characteristics of a Novel Isoform of Carbamyl Phosphate Synthetase I in Human Testis

  • Huo, Ran;Zhu, Hui;Lu, Li;Ying, Lanlan;Xu, Min;Xu, Zhiyang;Li, Jianmin;Zhou, Zuomin;Sha, Jiahao
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.28-33
    • /
    • 2005
  • A gene coding a novel isoform of carbamyl phosphate synthetase I (CPS1) was cloned from a human testicular library. As shown by cDNA microarray hybridization, this gene was expressed at a higher level in human adult testes than in fetal testes. The full length of its cDNA was 3831 bp, with a 3149 bp open reading frame, encoding a 1050-amino-acid protein. The cDNA sequence was deposited in the GenBank (AY317138). Sequence analysis showed that it was homologous to the human CPS1 gene. The putative protein contained functional domains composing the intact large subunit of carbamoyl phosphate synthetase, thus indicated it has the capability of arginine biosynthesis. A multiple tissue expression profile showed high expression of this gene in human testis, suggesting the novel alternative splicing form of CPS1 may be correlated with human spermatogenesis.

Microarray를 이용한 pipernonaline의 인간 전립선 암세포에 대한 기능 조절 분석 (Regulation of Pipernonaline on Biological Functions of Human Prostate Cancer Cells Based on Microarray Analysis)

  • 김상헌;김광연;유선녕;박슬기;곽인석;이문수;방병호;전성식;안순철
    • 생명과학회지
    • /
    • 제22권11호
    • /
    • pp.1552-1557
    • /
    • 2012
  • Pipernonaline은 후추나무과에 속하는 필발(Piper longum Linn.)의 유도체로서 전립선 암세포에 대한 항암활성이 보고되고 있다. 하지만 실제 암세포 내에서 생물학적 정보를 가진 수 많은 유전자들에 대한 발현이 어떻게 이루어지고 있는지 알려진 바가 없다. 본 연구에 사용된 microarray 분석은 동시에 수 만개 이상의 유전자 발현양상을 한번에 관찰할 수 있는 기술로서 특정 질병의 유전학적 특성과 기전 연구를 더 광범위하게 연구 할 수 있는 기술이다. 본 연구에서는 전립선 암세포인 PC-3 세포에 pipernonaline을 처리하여 cDNA microarray를 실시하였다. 이후, DAVID database를 이용하여 gene ontology의 Biological Process를 분석하여 세포사멸과 세포주기, 세포성장 및 증식에 관련된 유전자들을 우선적으로 분석하였다. 그 결과, 세포주기관련 256개, 세포사멸관련 197개, 세포성장 및 증식관련에 154개의 유전자가 확인 되었다. 이러한 결과는 pipernonaline은 전립선 암세포 내에 존재하는 생물학적 신호전달체계에 관련된 유전자 발현을 조절함으로써 항암활성을 나타내 것을 알 수 있었고, 이후 이러한 microarray의 추가적인 분석은 암세포 내 새로운 유전자의 탐색 및 메커니즘을 규명하는데 유용하게 사용할 수 있을 것으로 사료된다.

Construction and Validation of Human cDNA Microarray for Estimation of Endocrine Disrupting Chemicals (KISTCHIP-400 ver. 1.0)

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.52-61
    • /
    • 2005
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an awareness of endocrine disrupting chemicals (EDCs) and their potential screening methods to identify endocrine activity have been increased. Here we developed an in-house cDNA microarray, named KISTCHIP-400 ver. 1.0, with 416 clones, based on public database and research papers. These clones contained estrogen, androgen, thyroid hormone & receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. Also, to validate the KISTCHIP-400 ver. 1.0, we investigated gene expression profiles with reference hormones, $10^{8}\;M\;17{\beta}-estradiol,\;10^{-7}\;M\;testosterone\;and\;10^{-7}\;M$ progesterone in MCF-7 cell line. As the results, gene expression profiles of three reference hormones were distinguished from each other with significant and identified 33 $17{\beta}-estradiol$ responsive genes. This study is in first step of validation for KISTCHIP-400 ver. 1.0, as following step transcriptional profile analysis on not only low concentrations of EDCs but suspected EDCs using KISTCHIP-400 ver. 1.0 is processing. Our results indicate that the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

Gene Expression Profiles Related with TCDD-Induced Hepatotoxicity

  • Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Yu-Ri;Sohn, Sung-Hwa;Seo, Sang-Hui;Lee, Seung-Ho;Kim, Hye-Won;Won, Nam-Hee;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.164-171
    • /
    • 2005
  • Toxicological studies have an object of detecting adverse effects of a chemical on an organism based on observed toxicity marker (i.e., serum biochemical markers and chemical-specific gene expression) or phenotypic outcome. To date, most toxicogenomic studies concentrated on hepatic toxicity. cDNA microarray analysis enable discrimination of the responses in animals exposed to different classes of hepatotoxicants. In an effort to further characterize the mechanisms of 2, 3, 7, 8,-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin)-mediated toxicity, comprehensive temporal-responsive microarray analyses were performed on hepatic tissue from Sprague-Dawley rats treated with TCDD. Hepatic gene expression profiles were monitored using custom DNA chip containing 490 cDNA clones related with toxicology. Gene expression analysis identified 26 features which exhibited a significant change. In this study, we observed that the genes related with oxidative stress in rats exposed to Dioxin, such as CYPIIA3 and glutathione S-transferase, were up-regulated at 24hr after exposure. In this study, we carried out to discover novel evidence for previously unknown gene expression patterns related to mechanism of hepatic toxicity in rats exposed to dioxin, and to elucidate the effects of dioxin on the gene expression after exposure to dioxin.