• Title/Summary/Keyword: cDNA arrays

Search Result 23, Processing Time 0.036 seconds

Radioactive cDNA microarray in Neurospsychiatry (신경정신 의학분야의 방사성동위원소 표지 cDNA 마이크로어레이)

  • Choe, Jae-Gol;Shin, Kyung-Ho;Lee, Min-Soo;Kim, Meyoung-Kon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen loading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with ceil lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA In fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high qualify rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. in summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most practical experimental approach in studying psychiatric and neurodegenerative disorders, and other complex questions in the brain.

DNA Chip using Single Stranded Large Circular DNA: Low Background and Stronger Signal Intensity

  • Park, Jong-Gu
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.75-84
    • /
    • 2004
  • Massive identification of differentially expressed patterns has been used as a tool to detect genes that are involved in disease related process. We employed circular single stranded sense molecules as probe DNA for a DNA chip. The circular single stranded DNAs derived from 1,152 unigene cDNA clones were purified in a high throughput mode from the culture supernatant of bacterial transformants containing recombinant phagemids and arrayed onto silanized slide glasses. The DNA chip was examined for its utility in detection of differential expression profile by using cDNA hybridization. Hybridization of the single stranded probe DNA were performed with Cy3- or Cy5-labeled target cDNA preparations at $60^\circ$C. Dot scanning performed with the hybridized slide showed 29 up-regulated and 6 down-regulated genes in a cancerous liver tissue when compared to those of adjacent noncancerous liver tissue. These results indicate that the circular single stranded sense molecules can be employed as probe DNA of arrays in order to obtain a precious panel of differentially expressed genes.

  • PDF

Simple Method to Correct Gene-Specific Dye Bias from Partial Dye Swap Information of a DNA Microarray Experiment

  • KIM BYUNG SOO;KANG SOO-JIN;LEE SAET-BYUL;HWANG WON;KIM KUN-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1377-1383
    • /
    • 2005
  • In a cDNA microarray experiment using Cy3 and Cy5 as labeling agents, particularly for the direct design, cDNAs from some genes incorporate one dye more efficiently than the other, which is referred to as the gene-specific dye bias. Dye-swaps, in which two dyes are switched on replicate arrays, are commonly used to control the gene-specific dye bias. We developed a simple procedure to extract the gene-specific dye bias information from a partial dye swap experiment. We detected gene-specific dye bias by identifying outliers in an X-Y plane, where the X axis represents the average log-ratio from two sets of dye swap pairs and the Y axis exhibits the average log ratio of four forward labeled arrays. We used this information for detecting differentially expressed genes, of which the additionally detected genes were validated by real-time RT-PCR.

IDENTIFICATION OF GENES INVOLVED IN OSTEOCLAST DIFFERENTIATION BY CDNA ARRAY ANALYSES (dDNA array를 이용한 파골세포 분화 관련 유전자의 탐색)

  • Cho, Young-Jun;Lee, Zang-Hee;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.278-284
    • /
    • 2002
  • To examine the global gene expression of osteoclastogenesis-related genes in RAW 264.7 and its differentiated OCLs through the use of Atlas Mouse cDNA Array 2.1 membranes printed with 1176 well-characterized mouse genes involved in biology. Both samples were screened in parallel using cDNA expression arrays. The array results were additionally validated using RT-PCR. The results of cDNA arrays showed that 6 genes were up-regulated >2.5-fold (PKC beta II. POMC, PTEN, etc) and 16 genes were down-regulated >2.5-fold (Osteopontin, Cyclin D1, Cathepsin C, PTMA, etc) in both samples at the mRNA level. RT-PCR analysis of PKC beta II of these differentially expressed genes gave result consistent with cDNA array findings. The result of osteoclastogenesis showed that the PKC beta II gene was overexpressed in OCLs compared with RAW264.7 cell line. Osteoclastogenesis-related genes are differentially expressed in RAW264.7 cell line and its differentiated OCLs. its gene overexpression correlates with osteoclast differentiation in RAW264.7 cell line.

  • PDF

Detection and Analysis of DNA Hybridization Characteristics by using Thermodynamic Method (열역학법을 이용한 DNA hybridization 특성 검출 및 해석)

  • Kim, Do-Gyun;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.265-270
    • /
    • 2002
  • The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and application area. So, the improvement of DNA hybridization detection method is very important for the determination of this hybridization reaction. Several molecular biological techniques require accurate predictions of matched versus mismatched hybridization thermodynamics, such as PCR, sequencing by hybridization, gene diagnostics and antisense oligonucleotide probes. In addition, recent developments of oligonucleotide chip arrays as means for biochemical assays and DNA sequencing requires accurate knowledge of hybridization thermodynamics and population ratios at matched and mismatched target sites. In this study, we report the characteristics of the probe and matched, mismatched target oligonucleotide hybridization reaction using thermodynamic method. Thermodynamic of 5 oligonucleotides with central and terminal mismatch sequences were obtained by measured UV-absorbance as a function of temperature. The data show that the nearest-neighbor base-pair model is adequate for predicting thermodynamics of oligonucleotides with average deviations for $\Delta$H$^{0}$ , $\Delta$S$^{0}$ , $\Delta$G$_{37}$ $^{0}$ and T$_{m}$, respectively.>$^{0}$ and T$_{m}$, respectively.

Development of a Reproducibility Index for cDNA Microarray Experiments

  • Kim, Byung-Soo;Rha, Sun-Young
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.79-83
    • /
    • 2002
  • Since its introduction in 1995 by Schena et al. cDNA microarrays have been established as a potential tool for high-throughput analysis which allows the global monitoring of expression levels for thousands of genes simultaneously. One of the characteristics of the cDNA microarray data is that there is inherent noise even after the removal of systematic effects in the experiment. Therefore, replication is crucial to the microarray experiment. The assessment of reproducibility among replicates, however, has drawn little attention. Reproducibility may be assessed with several different endpoints along the process of data reduction of the microarray data. We define the reproducibility to be the degree with which replicate arrays duplicate each other. The aim of this note is to develop a novel measure of reproducibility among replicates in the cDNA microarray experiment based on the unprocessed data. Suppose we have p genes and n replicates in a microarray experiment. We first develop a measure of reproducibility between two replicates and generalize this concept for a measure of reproducibility of one replicate against the remaining n-1 replicates. We used the rank of the outcome variable and employed the concept of a measure of tracking in the blood pressure literature. We applied the reproducibility measure to two sets of microarray experiments in which one experiment was performed in a more homogeneous environment, resulting in validation of this novel method. The operational interpretation of this measure is clearer than Pearson's correlation coefficient which might be used as a crude measure of reproducibility of two replicates.

  • PDF

Patterns of Intrahepatic Gene Expression in Neonatal Cholestasis (신생아 담즙정체성 간질환에서 간조직 유전자의 발현 양상)

  • Choi, BoHwa;Choe, Byung Ho;Chung, Eun Jung;Kim, Kyung Mo;Kim, Heng Mi;Park, Jin Young;Park, Woo Hyun;Kim, Moon Kyu;Kim, Jung Chul
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.8 no.2
    • /
    • pp.177-193
    • /
    • 2005
  • Purpose: To identify genes specifically expressed in biliary atresia, we compared the patterns of gene expression between biliary atresia and neonatal hepatitis syndrome using cDNA microarray analysis. Methods: Liver tissues were taken from livers of 11 patients (7 patients with biliary atresia and four with neonatal hepatitis) with neonatal cholestasis by needle biopsy. Normal control could be obtained from donor liver tissue during living-related liver transplantation. Total RNA was extracted from each samples and reversely transcribed to make cDNA. Then fluorescent cDNA were pooled and hybridized to the clones on the microarray. Fluorescence intensities at the immobilized targets were measured. Utilizing cDNA arrays of 4.7 K human genes, gene expression profiles were analyzed. Results: Among 4,700 microarray clones, 17 cDNA clones were significantly over-expressed in all 11 patients with neonatal cholestasis, while 20 clones were significantly decreased. Genome-wide expression analysis was carried out in livers obtained at the time of diagnosis. We could identify 49 genes, in which there showed differential expression between biliary atresia and neonatal hepatitis syndrome. Conclusion: This study shows the pattern of differentially expressed genes in biliary atresia and neonatal hepatitis syndrome. We believe that this study can contribute to the understanding of pathogenesis of neonatal cholestasis.

  • PDF

The Spotted Flounder (Verasper variegatus) Growth Hormone cDNA and Its Evolutionary Implications

  • Lee Jeong-Ho;Lee Sang-Jun;Kim Kyung-Kil;Kim Woo-Jin;Park Doo-Won;Park Jung-Youn
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.180-186
    • /
    • 2003
  • The full-length cDNA encoding the pre-protein growth hormone (sfGH) from spotted flounder (Verasper variegatus) was amplified by the rapid amplification of cDNA ends (RACE) using degenerated oligonucleotide primers derived from conserved growth hormone sequences. It consists of 901 nucleotides in length, including the coding region of 609 nucleotides, 111 nucleotides of a 5' untranslated region, and 181 nucleotides of a 3' untranslated region. The conserved polyadenylation signal (AATAAA) lies 12 bases upstream from the poly (A) tail. The deduced amino acid sequence shows an open reading frame encoding a pre-protein of 203 amino acids and a putative signal peptide of 17 amino acids, suggesting that the mature hormone consists of 186 amino acids. The analyses of sfGH reveal some unique structural features. The repetitive sequences are located in the 5' untranslated region of sfGH cDNA and consist of tandem arrays of imperfect direct repeat monomers. Moreover, sfGH contains six Cys residues, as opposed to four or five in other GHs, and it is clearly distinguishable from olive flounder (Paralichthys olivaceus) GH, which lacks a region corresponding to residues 175-188 in alignment positions. It has important implications from an evolutionary standpoint, suggesting possible divergence among flatfishes.

One- and Two-Dimensional Arrangement of DNA-Templated Gold Nanoparticle Chains using Plasma Ashing Method

  • Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.291-291
    • /
    • 2010
  • Electron-beam lithography (EBL) process is a versatile tool for a fabrication of nanostructures, nano-gap electrodes or molecular arrays and its application to nano-device. However, it is not appropriate for the fabrication of sub-5 nm features and high-aspect-ratio nanostructures due to the limitation of EBL resolution. In this study, the precision assembly and alignment of DNA molecule was demonstrated using sub-5 nm nanostructures formed by a combination of conventional electron-beam lithography (EBL) and plasma ashing processes. The ma-N2401 (EBL-negative tone resist) nanostructures were patterned by EBL process at a dose of $200\;{\mu}C/cm2$ with 25 kV and then were ashed by a chemical dry etcher at microwave (${\mu}W$) power of 50 W. We confirmed that this method was useful for sub-5 nm patterning of high-aspect-ratio nanostructures. In addition, we also utilized the surface-patterning technique to create the molecular pattern comprised 3-(aminopropyl) triethoxysilane (APS) as adhesion layer and octadecyltrichlorosilane (OTS) as passivation layer. DNA-templated gold nanoparticle chain was attached only on the sub-5 nm APS region defined by the amine groups, but not on surface of the OTS region. We were able to obtain DNA molecules aligned selectively on a SiO2/Si substrate using atomic force microscopy (AFM).

  • PDF

Rank-Based Nonlinear Normalization of Oligonucleotide Arrays

  • Park, Peter J.;Kohane, Isaac S.;Kim, Ju Han
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.94-100
    • /
    • 2003
  • Motivation: Many have observed a nonlinear relationship between the signal intensity and the transcript abundance in microarray data. The first step in analyzing the data is to normalize it properly, and this should include a correction for the nonlinearity. The commonly used linear normalization schemes do not address this problem. Results: Nonlinearity is present in both cDNA and oligonucleotide arrays, but we concentrate on the latter in this paper. Across a set of chips, we identify those genes whose within-chip ranks are relatively constant compared to other genes of similar intensity. For each gene, we compute the sum of the squares of the differences in its within-chip ranks between every pair of chips as our statistic and we select a small fraction of the genes with the minimal changes in ranks at each intensity level. These genes are most likely to be non-differentially expressed and are subsequently used in the normalization procedure. This method is a generalization of the rank-invariant normalization (Li and Wong, 2001), using all available chips rather than two at a time to gather more information, while using the chip that is least likely to be affected by nonlinear effects as the reference chip. The assumption in our method is that there are at least a small number of non­differentially expressed genes across the intensity range. The normalized expression values can be substantially different from the unnormalized values and may result in altered down-stream analysis.