• 제목/요약/키워드: cDNA Microarray

검색결과 399건 처리시간 0.027초

다이아지논에 의해 야기된 송사리의 이상행동 연관 분자생물지표의 선발 (Selection of Molecular Biomarkers Relevant to Abnormal Behaviors of Medaka Fish (Oryzias latipes) Caused by Diazinon)

  • 고성철;신성우;조현덕;전태수;김정상;이성규
    • Environmental Analysis Health and Toxicology
    • /
    • 제24권4호
    • /
    • pp.321-332
    • /
    • 2009
  • 본 연구의 목적은 다이아지논(Diazinon; O, O-diethyl O-[6-methyl-2 (1-methylethyl)-4-pyrimidinyl] phosphorothioate)에 노출된 모델 생물체(송사리)의 행동변화와 관련된 분자생물학적 기전 규명을 통하여 비정상적 행동의 모니터링을 위한 생물지표(biomarker)를 개발하는데 있다. 이를 위해 우선 suppression subtractive hybridization (SSH) 및 DNA microarray 기법을 활용하여 다양한 유전자를 스크리닝하였다. 다이아지논에 노출시킨 송사리에서 발현의 차이가 나는 상향 조절된 유전자 97개 (알려지지 않은 유전자 27개 포함)와 하향 조절된 유전자 99개 (알려지지 않은 유전자 60개 포함)를 동정 하였고 이들 중 이상행동과 관련되는 것으로 보이는 유전자 10개 (상향조절 5개, 하향조절 5개)를 선발하였다. 이들 중에서 primer 제작이 잘된 beta-1, Orla C3-1, parvalbumin 및 apolipoprotein E을 선발하여 그 유전자 발현을 real-time PCR 기법을 사용하여 정량적으로 모니터링 하였다. Orla C3-1, parvalbumin 및 apolipoprotein E는 고농도의 다이아지논 처리(1000 ppb; 24 h)에서 그 발현이 억제됨이 관찰되었다. 다이아지논 처리 시 신경질환 (알츠하이머 병 및 다운신드롬)에 관련된 apolipoprotein E와 근육세포의 유연화에 작용하는 parvalbumin 등의 발현억제는 송사리의 인지능력 교란 및 근육세포의 경직 등을 각각 유도하여 송사리의 비정상적 행동을 야기하는 것으로 판단되었다. 따라서 이들 생물지표는 신경독성물질에 의한 송사리 및 기타 어류의 이상행동의 변화의 감지에 활용될 수 있을 것으로 사료된다.

Development of Anti-Obesity Agent from Resource Plants

  • Jeong, Yong-Joon;Kang, Se-Chan
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2012년도 정기총회 및 춘계학술발표회
    • /
    • pp.15-15
    • /
    • 2012
  • Obesity is a physical condition that results from excessive storage of fat in the body. The present study examined the anti-obesity effects of the selected natural medicine, Galla rhois extract (GRE) and solvent fractions on 3T3-L1 preadipocytes and in vivo studies. Here, we show that EtOAc fraction of Galla rhois inhibits the differentiation of the 3T3-L1 preadipocytes induced by differentiated medium in a dose-dependent manner. To investigate the effect of the GRE-EtOAc fraction on obesity in high fat diet-fed C57BL/6 mice, which included a normal diet (ND), high-fat diet (HFD) and HFD+GRE concentration-dependent, were fed to the mice for 6 weeks. The GRE-EtOAc fraction was inhibited the highest adipocyte differentiation in vitro, the GRE supplement significantly decreased body weight and visceral fat mass compared to the HFD group. The total cholesterol and triglyceride levels in the plasma were significantly decreased by GRE supplementation compared with those of the HFD group. Also, we aimed to determine the differentiation inhibition and the modulation of differentiation genes brought about by the Galla rhois in adipocyte. A cDNA microarray-based method was introduced for the high contents screening (HCS) of gene expressions. This technology has revolutionized gene expression studies by providing the means to measure mRNA levels in thousands of genes simultaneously in simple and complex biological samples. 13 genes were founded to be affected in their expression levels by more than 5-fold up-regulation after 4 days treatment with the EtOAc fraction from Galla rhois. Otherwise, 21 genes were founded to be affected in their expression levels by more than 5-fold down-regulation treated with the EtOAc fraction. Therefore, Galla rhois extract may be considered for use in a therapeutic agent to control obesity.

  • PDF

Novel target genes of hepatocellular carcinoma identified by chip-based functional genomic approaches

  • Kim Dong-Min;Min Sang-Hyun;Lee Dong-Chul;Park Mee-Hee;Lim Soo-Jin;Kim Mi-Na;Han Sang-Mi;Jang Ye-Jin;Yang Suk-Jin;Jung Hai-Yong;Byun Sang-Soon;Lee Jeong-Ju;Oh Jung-Hwa
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2006년도 Principles and Practice of Microarray for Biomedical Researchers
    • /
    • pp.83-89
    • /
    • 2006
  • Cellular functions are carried out by a concerted action of biochemical pathways whose components have genetic interactions. Abnormalities in the activity of the genes that constitute or modulate these pathways frequently have oncogenic implications. Therefore, identifying the upstream regulatory genes for major biochemical pathways and defining their roles in carcinogenesis can have important consequences in establishing an effective target-oriented antitumor strategy We have analyzed the gene expression profiles of human liver cancer samples using cDNA microarray chips enriched in liver and/or stomach-expressed cDNA elements, and identified groups of genes that can tell tumors from non-tumors or normal liver, or classify tumors according to clinical parameters such as tumor grade, age, and inflammation grade. We also set up a high-throughput cell-based assay system (cell chip) that can monitor the activity of major biochemical pathways through a reporter assay. Then, we applied the cell chip platform for the analysis of the HCC-associated genes discovered from transcriptome profiling, and found a number of cancer marker genes having a potential of modulating the activity of cancer-related biochemical pathways such as E2F, TCF, p53, Stat, Smad, AP-1, c-Myc, HIF and NF-kB. Some of these marker genes were previously blown to modulate these pathways, while most of the others not. Upon a fast-track phenotype analysis, a subset of the genes showed increased colony forming abilities in soft agar and altered cell morphology or adherence characteristics in the presence of purified matrix proteins. We are currently analyzing these selected marker genes in more detail for their effects on various biological Processes and for Possible clinical roles in liver cancer development.

  • PDF

Gene Expression Profile of T-cell Receptors in the Synovium, Peripheral Blood, and Thymus during the Initial Phase of Collagen-induced Arthritis

  • Kim, Ji-Young;Lim, Mi-Kyoung;Sheen, Dong-Hyuk;Kim, Chan;Lee, So-Young;Park, Hyo;Lee, Min-Ji;Lee, Sang-Kwang;Yang, Yun-Sik;Shim, Seung-Cheol
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.258-267
    • /
    • 2011
  • Background: Current management strategies attempt to diagnose rheumatoid arthritis (RA) at an early stage. Transcription profiling is applied in the search for biomarkers for detecting early-stage disease. Even though gene profiling has been reported using several animal models of RA, most studies were performed after the development of active arthritis, and conducted only on the peripheral blood and joint. Therefore, we investigated gene expression during the initial phase of collagen-induced arthritis (CIA) before the arthritic features developed in the thymus in addition to the peripheral blood and synovium. Methods: For gene expression analysis using cDNA microarray technology, samples of thymus, blood, and synovium were collected from CIA, rats immunized only with type II collagen (Cll), rats immunized only with adjuvant, and unimmunized rats on days 4 and 9 after the first immunization. Arrays were scanned with an Illumina bead array. Results: Of the 21,910 genes in the array, 1,243 genes were differentially expressed at least 2-fold change in various organs of CIA compared to controls. Among the 1,243 genes, 8 encode T-cell receptors (TCRs), including CD3${\zeta}$, CD3${\delta}$, CD3${\varepsilon}$, CD8${\alpha}$, and CD8${\beta}$ genes, which were down-regulated in CIA. The synovium was the organ in which the genes were differentially expressed between CIA and control group, and no difference were found in the thymus and blood. Further, we determined that the differential expression was affected by adjuvant more than Cll. The differential expression of genes as revealed by real-time RT-PCR, was in agreement with the microarray data. Conclusion: This study provides evidence that the genes encoding TCRs including CD3${\zeta}$, CD3${\delta}$, CD3${\varepsilon}$, CD8${\alpha}$, and CD8${\beta}$ genes were down-regulated during the initial phase of CIA in the synovium of CIA. In addition, adjuvant played a greater role in the down-regulation of the CD3 complex compared to CII. Therefore, the down-regulation of TCR gene expression occurred dominantly by adjuvant could be involved in the pathogenesis of the early stage at CIA.

Integrative Study on PPARGC1A: Hypothalamic Expression of Ppargc1a in ob/ob Mice and Association between PPARGC1A and Obesity in Korean Population

  • Hong, Mee-Suk;Kim, Hye-Kyung;Shin, Dong-Hoon;Song, Dae-Kyu;Ban, Ju Yeon;Kim, Bum Shik;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.318-322
    • /
    • 2008
  • Obesity is an increasing worldwide health problem that is strongly related to the imbalance of food intake and energy metabolism. It was well-known that several substances in the hypothalamus regulate food intake and energy metabolism. We planned an integrative study to elucidate the mechanism of the development of obesity. Firstly, to find candidate genes with the marvelous effect, the different expression in the hypothalamus between ob/ob and 48-h fasting mice was investigated by using DNA microarray technology. As a result, we found 3 genes [peroxisome proliferator activated receptor, gamma, coactivator 1 alpha (Ppargc1a), calmodulin 1 (Calm1), and complexin 2 (Cplx2)] showing the different hypothalamic expression between ob/ob and 48-h fasting mice. Secondly, a genetic approach on PPARGC1A gene was performed, because PPARGC1A acts as a transcriptional coactivator and a metabolic regulator. Two hundred forty three obese female patients with body mass index (BMI)${\geq}$25 and 285 control female subjects with BMI 18 to<23 were recruited according to the Classification of Korean Society for the Study of Obesity. Among the coding single nucleotide polymorphisms (cSNPs) of PPARGC1A, 2 missense SNPs (rs8192678, Gly482Ser; rs3736265, Thr612Met) and 1 synonymous SNP (rs3755863, Thr528Thr) were selected, and analyzed by PCR-RFLP and pyrosequencing. For the analysis of genetic data, chi-square ($X^2$) test and EH program were used. The rs8192678 was significantly associated with obese women (P<0.0006; odds ratio, 1.5327; 95% confidence interval, 1.2006-1.9568). Haplotypes also showed significant association with obese women ($X^2$=33.28, P<0.0008). These results suggest that PPARGC1A might be related to the development of obesity.

착상전 생쥐 자궁에서 콜라겐의 변화 (Altering of Collagens in Early Pregnant Mouse Uterus)

  • 전용필
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권1호
    • /
    • pp.1-11
    • /
    • 2007
  • 착상기 이전 자궁에서 특이적 자궁내막 준비가 진행되어야 하는데, 이는 자궁 내막의 점진적 분화로 배아의 착상과 성공적 임신에 절대적으로 필요하다. 배아 발생 동안에 관찰되는 조직의 재구성은 세포외 기질을 포함한 다양한 요인에 의해 조절된다. 임신 동안에 관찰되는 극적인 변화로는 배아의 이동, 탈락막 반응, 태반의 분화를 그 예로 들 수 있다. 배아와 자궁간의 성공적 착상을 위한 변화들은 배아와 자궁의 착상을 위한 능력 갖출 수 있도록 한다. 이러한 변화과정 중에, 콜라겐이 주성분인 세포외 기질의 극적인 변화가 진행된다. 이러한 변화는 매우 복잡하여 그 기작을 밝히는 것은 쉽지 않으나, 최근 들어 PCR-select cDNA subtraction 방법, microarry 방법 등 대단위 유전자 동정 방법들을 이용하여 많은 후보 유전자가 동정되었다. 스테로이드 호르몬은 임신과 임신 유지에 중요한 역할을 수행하며, 세포외 기질의 재구성을 엄격하게 성스테로이드 호르몬에 의한 유전자 네트워크를 통하여 조절한다. 자궁의 세포외 기질의 병리적 조절이 당뇨병 등에서 보고되고 있다. 세포외 기질의 재구성은 착상과 태아와 자궁의 발달을 이해하는 데 중요하고, 또한 생식과 관련된 질병을 극복하는 데 중요하다. 비록 세포외 기질의 구성성분이 매우 다양하고 복잡하여 논의할 것이 무척 많으나, 본 종설에서는 착상기를 전후한 시기에 콜라겐의 변화를 중심으로 논하였다.

  • PDF

The Anti-Inflammatory Effect of IH-901 in HT-29 Cells

  • Lee, Seung-Min;Kim, Ki-Nam;Kim, Yu-Ri;Kim, Hye-Won;Shim, Boo-Im;Lee, Seung-Ho;Bae, Hak-Soon;Kim, In-Kyoung;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제3권4호
    • /
    • pp.254-261
    • /
    • 2007
  • 20-O-($\beta$-D-Glucopyranosyl)-20 (S)-protopanaxadiol (IH-901) is one of the major metabolites of ginsenosides from Panax ginseng, and is suggested that IH-901 has been associated with various pharmacological and physiological activities. In this study, we demonstrate that IH-901 induced anti-inflammation in HT-29 human colon adenocarcinoma cells. Our results showed that IH-901 inhibited cell proliferation of HT-29 in a time- and dose-dependent manner. We also found that IH-901 was significantly decreased expression of iNOS compared with non-treated. We observed effect of IH-901 related with inflammatory genes using by cDNA microarray. We were known that the 34 inflammatory genes such as E2F, CDK6, TNF-$\alpha$, and PKC were down-regulated. Thus, these results suggest that IH-901 may have a potential preventive factor to improving cancer induced by chronic inflammation.

Cloning And Characterization of Pathogen-Inducible EREBP-Like Transcription Factor(CaNR19) From Hot Pepper (Capsicum annuum L.)

  • Yi, So-Young;Kim, Jee-Hyub;Yu, Seung-Hun;Park, Doil
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.77.2-78
    • /
    • 2003
  • An EREBP/AP2-type transcription factor (CaPFl) was isolated by DDRT-PCR following inoculation of soybean pustule pathogen Xanthomonas axonopodis pv. glycines Bra which induces HR on pepper leaves. Genomic Southern blot analysis revealed that the CaPFl gene is present as a single copy within the hot pepper genome. The deduced amino acid sequence of CaPFl has two potential nuclear localization signals, a possible acidic activation domain, and an EREBP/AP2 motif that could bind to a conserved cis- element present in promoter region of many stress-induced genes. The mRNA level of CaPFl was induced by both biotic and abiotic stresses. We observed higher-level transcripts in resistance-induced pepper tissues than diseased tissues. Expression of CaPFl is also induced upon various abiotic stresses including ethephon, MeJA, cold stress, drought stress and salt stress treatments. To study the role of CPFI in plant, transgenic Arabidopsis and tobacco plants which express higher level of pepper CaPFl were generated. Global gene expression analysis of transgenic Arabidopsis by cDNA microarray indicated that expression of CaPFl in transgenic plants affect the expression of quite a few GCC box and DRE/CRT box-containing genes. Furthermore, the transgenic Arabidopsis and tobacco plant, expressing CaPFl showed tolerance against freezing temperature and enhanced resistance to Pseudomonas syrnigae pv. tabaci. Taken together, these results indicated that CaPFl is a novel EREBP/AP2 transcription factor in hot pepper plant and it may has a significant role(s) in regulation of biotic and abiotic stresses in plant.

  • PDF

Change of Insulin-like Growth Factor Gene Expression in Chinese Hamster Ovary Cells Cultured in Serum-free Media

  • Park, Hong-Woo;An, Sung-Kwan;Choe, Tae-Boo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권4호
    • /
    • pp.319-324
    • /
    • 2006
  • Although the sera used in animal cell culture media provide the macromolecules, nutrients, hormones, and growth factors necessary to support cell growth, it could also be an obstacle to the production of recombinant proteins in animal cell culture systems used in many sectors of the biotechnology industry. For this reason, many research groups, including our laboratory, have been trying to develop serum-free media (SFM) or serum-supplemented media (SSM) for special or multi-purpose cell lines. The Chinese hamster ovary (CHO) cell, for example, is frequently used to produce proteins and is especially valuable in the large-scale production of pharmaceutically important proteins, yet information about its genome is lacking. Also, SFMs have only been evaluated by comparing growth patterns for cells grown in SFMs with those grown in SSM or by measuring the titer of the target protein obtained from cells grown in each type of medium. These are not reliable methods of obtaining the type of information needed to determine whether an SFM should be replaced with an SSM. We carried out a cDNA microarray analysis to evaluate MED-3, an SFM developed in our laboratory, as a CHO culture medium When CHO cells were cultured in MED-3 instead of an SSM, several genes associated with cell growth were down-regulated, although this change diminished over time. We found that the insulin-like growth factor (IGF) gene was representative of the proteins that were down-regulated in cells cultured in MED-3. When several key supplements - including insulin, transferrin, ethanolamine, and selenium - were removed from MED-3, the IGF expression was consistently down- regulated and cell growth decreased proportionately. Based on these results, we concluded that when an SFM is used as a culture medium, it is important to supplement it with substances that can help the cells maintain a high level of IGF expression. The data presented in this study, therefore, might provide useful information for the design and development of SFM or SSM, as well as for the design of genome-based studies of CHO cells to determine how they can be used optimally for protein production in pharmaceutical and biomedical research.

Pig large tumor suppressor 2 (Lats2), a novel gene that may regulate the fat reduction in adipocyte

  • Liu, Qiuyue;Gu, Xiaorong;Zhao, Yiqiang;Zhang, Jin;Zhao, Yaofeng;Meng, Qingyong;Xu, Guoheng;Hu, Xiaoxiang;Li, Ning
    • BMB Reports
    • /
    • 제43권2호
    • /
    • pp.97-102
    • /
    • 2010
  • Clenbuterol, a $\beta_2$-adrenoceptor agonist, has been proven to be a powerful repartition agent that can decrease fat deposition. Based on results from our previous cDNA microarray experiment of pig clenbuterol administration, a novel up-regulated EST was full-length cloned (4859 bp encoding 1041 amino acids) and found to be the pig homolog of large tumor suppressor 2 (Lats2). We mapped pig Lats2 to chromosome 11p13-14 by using FISH, and western blotting demonstrated that pig Lats2 protein was most abundant in adipose. In Drosophila, Lats2 ortholog was reported as a key component of the Hippo pathway which regulates cell differentiation and growth. Here, we show that pig Lats2 exhibit inverted expression to YAP1, another member of the Hippo pathway which positively regulates cell growth and proliferation, during the differentiation of 3T3-L1 preadipocytes. Our results suggested that Lats2 may involve in Hippo pathway regulating the fat reduction by inhibiting adipocyte differentiation and growth.