• Title/Summary/Keyword: cAMP response element binding protein (CREB)

Search Result 72, Processing Time 0.027 seconds

MOLECULAR CLONING OF CHICKEN INTERFERON-GAMMA (닭 인터페론 유전자의 클로닝에 관한 연구)

  • ;Hyun Lillehoj
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 1999.11a
    • /
    • pp.34-50
    • /
    • 1999
  • A cDNA encoding chicken interferon-gamma (chIFN-${\gamma}$) was amplified from P34, a CD4$^{+}$ T-cell hybridoma by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into pUC18. THe sequences of cloned PCR products were determined to confirm the correct cloning. Using this cDNA as probe, chicken genomic library from White Leghorn spleen was screened. Phage clones harboring chicken interferon-gamma (chIFN-${\gamma}$) were isolated and their genomic structure elucidated. The chIFN-${\gamma}$ contains 4 exons and 3 introns spanning over 14 kb, and follows the GT/AG rule for correct splicing at the exon/intron boundaries. The four exons encode 41, 26, 57 and 40 amino acids, respectively, suggesting that the overall structure of IFN-${\gamma}$ is evolutionairly conserved in mammalian and avian species. The 5’-untranslated region and signal sequences are located in exon 1. Several AT-rich sequences located in the fourth exon may indicate a role in mRNA turnover. The 5’-flanking region contains sequences homologous to the potential binding sites for the mammalian transcription factors, activator protein-1(AP-1) activator protein-2(AP-2) cAMP-response element binding protein(CREB), activating transcription factor(ATF), GATA-binding fator(GATA), upstream stimulating factor(USF), This suggests that the mechanisms underlying transcriptional regulation of chicken and mammalian IFN-${\gamma}$ genes may be similar.r.

  • PDF

Markers in Morphine- and Cocaine-Addicted Animals

  • Hu, Zhenzhen;Park, Kwang-Soon;Han, Jin-Yi;Jang, Choon-Gon;Oh, Sei-Kwan;Kim, Hyoung-Chun;Yang, Chae-Ha;Kim, Eun-Jeong;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • These experiments were designed to use typical makers from behaviors and molecular basis in addicted animals of morphine and cocaine. Morphine has been widely abused with a high physical dependence liability. Morphine withdrawal activates the intracellular cAMP signaling pathway and further leads to changes in the expression of the cAMP response element binding protein (CREB), which may be important to the development and expression of morphine dependence. From these experiments, repeated morphine (10 mg/kg, twice per day for 7 days) developed physical dependence. Withdrawal signs were precipitated by naloxone and also increased the expression of the CREB. In addition, repeated exposure of cocaine (15 mg/kg) to mice develops locomotor sensitization and produced lasting behavioral sensitivity. Cocaine- and amphetamine-regulated transcript peptide (CART) peptide was up-regulated by repeated administration of cocaine in the striatum. Therefore, repeated morphine induced the development of physical dependence and increased pCREB. In addition, repeated cocaine induced locomotor sensitization and over-expressed CART peptide. In conclusion, the development of physical dependence and pCREB for morphine, and locomotor sensitization and CART peptide over-expression for cocaine would be useful markers to predict the abuse potential of opioid analgesics and pychostimulant drugs in animals, respectively.

Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells

  • Seung Yeon Sohn;Thin Thin San;Junhyung Kim;Hyun-Jung Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.65-76
    • /
    • 2024
  • Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.

Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways

  • Jianzeng Liu ;Xiaohao Xu ;Jingyuan Zhou;Guang Sun ;Zhenzhuo Li;Lu Zhai ;Jing Wang ;Rui Ma ;Daqing Zhao;Rui Jiang ;Liwei Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.714-725
    • /
    • 2023
  • Background: Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods: In vitro and in vivo impact of phenolic acid monomers were assessed. Results: SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion: P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.

Bacopa monnieri extract improves novel object recognition, cell proliferation, neuroblast differentiation, brain-derived neurotrophic factor, and phosphorylation of cAMP response element-binding protein in the dentate gyrus

  • Kwon, Hyun Jung;Jung, Hyo Young;Hahn, Kyu Ri;Kim, Woosuk;Kim, Jong Whi;Yoo, Dae Young;Yoon, Yeo Sung;Hwang, In Koo;Kim, Dae Won
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.239-247
    • /
    • 2018
  • Bacopa monnieri is a medicinal plant with a long history of use in Ayurveda, especially in the treatment of poor memory and cognitive deficits. In the present study, we hypothesized that Bacopa monnieri extract (BME) can improve memory via increased cell proliferation and neuroblast differentiation in the dentate gyrus. BME was administered to 7-week-old mice once a day for 4 weeks and a novel object recognition memory test was performed. Thereafter, the mice were euthanized followed by immunohistochemistry analysis for Ki67, doublecortin (DCX), and phosphorylated cAMP response element-binding protein (CREB), and western blot analysis of brain-derived neurotrophic factor (BDNF). BME-treated mice showed moderate increases in the exploration of new objects when compared with that of familiar objects, leading to a significant higher discrimination index compared with vehicle-treated mice. Ki67 and DCX immunohistochemistry showed a facilitation of cell proliferation and neuroblast differentiation following the administration of BME in the dentate gyrus. In addition, administration of BME significantly elevated the BDNF protein expression in the hippocampal dentate gyrus, and increased CREB phosphorylation in the dentate gyrus. These data suggest that BME improves novel object recognition by increasing the cell proliferation and neuroblast differentiation in the dentate gyrus, and this may be closely related to elevated levels of BDNF and CREB phosphorylation in the dentate gyrus.

Administration of Phytoceramide Enhances Memory and Up-regulates the Expression of pCREB and BDNF in Hippocampus of Mice

  • Lee, Yeonju;Kim, Jieun;Jang, Soyong;Oh, Seikwan
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.229-233
    • /
    • 2013
  • This study was aimed at investigating the possible effects of phytoceramide (Pcer) on learning and memory and their underlying mechanisms. Phytoceramide was orally administered to ICR mice for 7 days. Memory performances were assessed using the passive avoidance test and Y-maze task. The expressions of phosphorylated cAMP response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF) were measured with immunoblot. The incorporation of 5-bromo-2-deoxyuridine (BrdU) in hippocampal regions was investigated by using immunohistochemical methods. Treatment of Pcer enhanced cognitive performances in the passive avoidance test and Y-maze task. Immunoblotting studies revealed that the phosphorylated CREB and BDNF were significantly increased on hippocampus in the Pcer-treated mice. Immunohistochemical studies showed that the number of immunopositive cells to BrdU was significantly increased in the hippocampal dentate gyrus regions after Pcer-treatment for 7 days. These results suggest that Pcer contribute to enhancing memory and BDNF expression and it could be secondary to the elevation of neurogenesis.

Scopoletin from Cirsium setidens Increases Melanin Synthesis via CREB Phosphorylation in B16F10 Cells

  • Ahn, Mi-Ja;Hur, Sun-Jung;Kim, Eun-Hyun;Lee, Seung Hoon;Shin, Jun Seob;Kim, Myo-Kyoung;Uchizono, James A.;Whang, Wan-Kyunn;Kim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.307-311
    • /
    • 2014
  • In this study, we isolated scopoletin from Cirsium setidens Nakai (Compositae) and tested its effects on melanogenesis. Scopoletin was not toxic to cells at concentrations less than $50{\mu}M$ and increased melanin synthesis in a dose-dependent manner. As melanin synthesis increased, scopoletin stimulated the total tyrosinase activity, the rate-limiting enzyme of melanogenesis. In a cell-free system, however, scopoletin did not increase tyrosinase activity, indicating that scopoletin is not a direct activator of tyrosinase. Furthermore, Western blot analysis showed that scopoletin stimulated the production of microphthalmia-associated transcription factor (MITF) and tyrosinase expression via cAMP response element-binding protein (CREB) phosphorylation in a dose-dependent manner. Based on these results, preclinical and clinical studies are needed to assess the use of scopoletin for the treatment of vitiligo.

Antinarcotic Effect of Ginseng (인삼의 마약중독 해독효과)

  • Oh, Sei-Kwan
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Ginseng saponin has been shown to inhibit the development of dependence on morphine, cocaine, methamphetamine, but the antinarcotics effects of ginseng on nalbuphine remains still largely unknown. Ginseng administration attenuated the naloxone-induced jumping behavior on nalbuphine dependent mice. The development of morphine dependence was mediated through ${\mu}-opioid$ receptor, however, development of nalbuphine dependence was mediated through ${\kappa}-opioid$ receptor. However, it was found that the efficacy of analgesic antagonism of GTS was mediated through the serotonergic mechanism, not mediated through the opioid receptor. In addition, ginseng administration modulated cellular signal transduction in the brain. The increased NMDA receptor subunit (NR1, pNR1), phosphate extracellular signal regulated protein kinase (pERK), phosphate cAMP response element binding protein (pCREB) expression by nalbuphine was decreased by the administration of ginseng powder in cortex, hippocampus, striatum of rat brain. These results suggest that ginseng could be one of the targets of antinarcotic therapies to reduce the development of tolerance and dependence on nalbuphine as well as morphine.

Transcriptional regulation of genetic variants in the SLC40A1 promoter

  • Seung Yeon Ha;Jin-Young Kim;Ji Ha Choi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • Solute carrier 40A1 (SLC40A1) encodes ferroportin, which is the only known transmembrane protein that exports elemental iron from mammalian cells and is essential for iron homeostasis. Mutations in SLC40A1 are associated with iron-overload disorders. In addition to ferroportin diseases, SLC40A1 expression is downregulated in various cancer types. Despite the clinical significance of the SLC40A1 transporter, only a few studies have investigated genetic variants in SLC40A1. The present study was performed to identify genetic variations in the SLC40A1 promoter and functionally characterize each variant using in vitro assays. We investigated four haplotypes and five variants in the SLC40A1 promoter. We observed that haplotype 3 (H3) had significantly lower promoter activity than H1, whereas the activity of H4 was significantly higher than that of H1. Luciferase activity of H2 was comparable to that of H1. In addition, four variants of SLC40A1, c.-1355G>C, c.-662C>T, c.-98G>C, and c.-8C>G, showed significantly increased luciferase activity compared to the wild type (WT), whereas c.-750G>A showed significantly decreased luciferase activity compared to the WT. Three transcription factors, cAMP response element-binding protein-1 (CREB-1), chicken ovalbumin upstream promoter transcription factor 1, and hepatic leukemia factor (HLF), were predicted to bind to the promoter regions of SLC40A1 near c.-662C>T, c.-98G>C, and c.-8C>G, respectively. Among these, CREB1 and HLF bound more strongly to the variant sequences than to the WT and functioned as activators of SLC40A1 transcription. Collectively, our findings indicate that the two SLC40A1 promoter haplotypes affect SLC40A1 transcription, which is regulated by CREB-1 and HLF.

PKA-Mediated Regulation of B/K Gene Transcription in PC12 Cells

  • Choi, Mi-Hyun;Kim, Ho-Shik;Choi, Sung-Ho;Kim, Mi-Young;Jang, Yoon-Seong;Jang, Young-Min;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.333-339
    • /
    • 2005
  • B/K protein is a novel protein containing double C2-like domains. We examined the specific signaling pathway that regulates the transcription of B/K in PC12 cells. When the cells were treated with forskolin ($50{\mu}M$), B/K mRNA and protein levels were time-dependently decreased, reaching the lowest level at 3 or 4 hr, and thereafter returning to the control level. Chemicals such as dibutyryl-cAMP, cellpermeable cyclic AMP (cAMP) analogue and CGS21680, adenosine receptor $A_{2A}$ agonist, also repressed the B/K transcription. However, 1,9-dideoxyforskolin did not show inhibitory effect on B/K transcription, suggesting direct involvement of cAMP in the forskolin-induced inhibition of B/K transcription. Effect of forskolin, dibutyryl cAMP and CGS21680 was significantly reduced in PKA-deficient PC12 cell line (PC12-123.7). One cAMP-response element (CRE)-like sequence (B/K CLS) was found in the promoter region of B/K DNA, and electrophoretic mobility shift assay indicated its binding to CREM and CREB. Forskolin significantly suppressed the promoter activity in CHO-K1 cells transfected with the constructs containing B/K CLS, but not with the construct in which B/K CLS was mutated (AC:TG). Taken together, we suggest that the transcription of B/K gene in PC12 cells may be regulated by PKA-dependent mechanism.