DOI QR코드

DOI QR Code

Bacopa monnieri extract improves novel object recognition, cell proliferation, neuroblast differentiation, brain-derived neurotrophic factor, and phosphorylation of cAMP response element-binding protein in the dentate gyrus

  • Kwon, Hyun Jung (Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Jung, Hyo Young (Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University) ;
  • Hahn, Kyu Ri (Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University) ;
  • Kim, Woosuk (Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University) ;
  • Kim, Jong Whi (Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University) ;
  • Yoo, Dae Young (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Yoon, Yeo Sung (Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University) ;
  • Hwang, In Koo (Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University) ;
  • Kim, Dae Won (Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University)
  • Received : 2018.11.01
  • Accepted : 2018.12.05
  • Published : 2018.12.31

Abstract

Bacopa monnieri is a medicinal plant with a long history of use in Ayurveda, especially in the treatment of poor memory and cognitive deficits. In the present study, we hypothesized that Bacopa monnieri extract (BME) can improve memory via increased cell proliferation and neuroblast differentiation in the dentate gyrus. BME was administered to 7-week-old mice once a day for 4 weeks and a novel object recognition memory test was performed. Thereafter, the mice were euthanized followed by immunohistochemistry analysis for Ki67, doublecortin (DCX), and phosphorylated cAMP response element-binding protein (CREB), and western blot analysis of brain-derived neurotrophic factor (BDNF). BME-treated mice showed moderate increases in the exploration of new objects when compared with that of familiar objects, leading to a significant higher discrimination index compared with vehicle-treated mice. Ki67 and DCX immunohistochemistry showed a facilitation of cell proliferation and neuroblast differentiation following the administration of BME in the dentate gyrus. In addition, administration of BME significantly elevated the BDNF protein expression in the hippocampal dentate gyrus, and increased CREB phosphorylation in the dentate gyrus. These data suggest that BME improves novel object recognition by increasing the cell proliferation and neuroblast differentiation in the dentate gyrus, and this may be closely related to elevated levels of BDNF and CREB phosphorylation in the dentate gyrus.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Khalaf-Nazzal R, Francis F. Hippocampal development-old and new findings. Neuroscience 2013; 248: 225-242. https://doi.org/10.1016/j.neuroscience.2013.05.061
  2. Atri A, Sherman S, Norman KA, Kirchhoff BA, Nicolas MM, Greicius MD, Cramer SC, Breiter HC, Hasselmo ME, Stern CE. Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behav Neurosci 2004; 118(1): 223-236. https://doi.org/10.1037/0735-7044.118.1.223
  3. Hasselmo ME, McGaughy J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog Brain Res 2004; 145: 207-231.
  4. Buccafusco JJ, Letchworth SR, Bencherif M, Lippiello PM. Longlasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic-pharmacodynamic discordance. Trends Pharmacol Sci 2005; 26(7): 352-360. https://doi.org/10.1016/j.tips.2005.05.007
  5. Levin ED, McClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl) 2006; 184(3-4): 523-539. https://doi.org/10.1007/s00213-005-0164-7
  6. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313-1317. https://doi.org/10.1038/3305
  7. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 1999; 2(3): 260-265. https://doi.org/10.1038/6365
  8. Alam MJ, Kitamura T, Saitoh Y, Ohkawa N, Kondo T, Inokuchi K. Adult Neurogenesis Conserves Hippocampal Memory Capacity. J Neurosci 2018; 38(31): 6854-6863. https://doi.org/10.1523/JNEUROSCI.2976-17.2018
  9. Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 2013; 16(4): 313-326. https://doi.org/10.1089/rej.2013.1431
  10. Rastogi S, Pal R, KulshreshthaDK. Bacoside A3--a triterpenoid saponin from Bacopa monniera. Phytochemistry 1994; 36(1): 133-137. https://doi.org/10.1016/S0031-9422(00)97026-2
  11. Garai S, Mahato SB, Ohtani K, Yamasaki K. Bacopasaponin D--a pseudojujubogenin glycoside from Bacopa monniera. Phytochemistry 1996; 43(2): 447-449. https://doi.org/10.1016/0031-9422(96)00250-6
  12. Saraf MK, Anand A, Prabhakar S. Scopolamine induced amnesia is reversed by Bacopa monniera through participation of kinase- CREB pathway. Neurochem Res 2010; 35(2): 279-287. https://doi.org/10.1007/s11064-009-0051-4
  13. Liu X, Yue R, Zhang J, Shan L, Wang R, Zhang W. Neuroprotective effects of bacopaside I in ischemic brain injury. Restor Neurol Neurosci 2013; 31(2): 109-123.
  14. Pase MP, Kean J, Sarris J, Neale C, Scholey AB, Stough C. The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med 2012; 18(7): 647-652. https://doi.org/10.1089/acm.2011.0367
  15. Kumar S, Mondal AC. Neuroprotective, Neurotrophic and Antioxidative Role of Bacopa monnieri on CUS Induced Model of Depression in Rat. Neurochem Res 2016; 41(11): 3083-3094. https://doi.org/10.1007/s11064-016-2029-3
  16. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8(6): e1000412. https://doi.org/10.1371/journal.pbio.1000412
  17. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 2003; 467(1): 1-10. https://doi.org/10.1002/cne.10874
  18. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 2005; 21(1): 1-14. https://doi.org/10.1111/j.1460-9568.2004.03813.x
  19. Rani A, Prasad S. A Special Extract of Bacopa monnieri (CDRI-08)-Restored Memory in CoCl2-Hypoxia Mimetic Mice Is Associated with Upregulation of Fmr-1 Gene Expression in Hippocampus. Evid Based Complement Alternat Med 2015; 2015: 347978.
  20. Jung HY, Kim DW, Nam SM, Kim JW, Chung JY, Won MH, Seong JK, Yoon YS, Yoo DY, Hwang IK. Pyridoxine improves hippocampal cognitive function via increases of serotonin turnover and tyrosine hydroxylase, and its association with CB1 cannabinoid receptor-interacting protein and the CB1 cannabinoid receptor pathway. Biochim Biophys Acta Gen Subj 2017; 1861(12): 3142-3153. https://doi.org/10.1016/j.bbagen.2017.09.006
  21. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. Academic Press, San Diego, 2001.
  22. Sairam K, Rao CV, Babu MD, Goel RK. Prophylactic and curative effects of Bacopa monniera in gastric ulcer models. Phytomedicine 2001; 8(6): 423-430. https://doi.org/10.1078/S0944-7113(04)70060-4
  23. Kumar V. Potential medicinal plants for CNS disorders: an overview. Phytother Res 2006; 20(12): 1023-1035. https://doi.org/10.1002/ptr.1970
  24. Pandey SP, Singh HK, Prasad S. Alterations in Hippocampal Oxidative Stress, Expression of AMPA Receptor GluR2 Subunit and Associated Spatial Memory Loss by Bacopa monnieri Extract (CDRI-08) in Streptozotocin-Induced Diabetes Mellitus Type 2 Mice. PLoS One 2015; 10(7): e0131862. https://doi.org/10.1371/journal.pone.0131862
  25. Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive Effect of Nootropic Drug Brahmi (Bacopa monnieri) in Alzheimer's Disease. Ann Neurosci 2017; 24(2): 111-122. https://doi.org/10.1159/000475900
  26. Saraf MK, Prabhakar S, Khanduja KL, Anand A. Bacopa monniera Attenuates Scopolamine-Induced Impairment of Spatial Memory in Mice. Evid Based Complement Alternat Med 2011; 2011: 236186.
  27. Stough C, Lloyd J, Clarke J, Downey LA, Hutchison CW, Rodgers T, Nathan PJ. The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl) 2001; 156(4): 481-484. https://doi.org/10.1007/s002130100815
  28. Peth-Nui T, Wattanathorn J, Muchimapura S, Tong-Un T, Piyavhatkul N, Rangseekajee P, Ingkaninan K, Vittaya-Areekul S. Effects of 12-Week Bacopa monnieri Consumption on Attention, Cognitive Processing, Working Memory, and Functions of Both Cholinergic and Monoaminergic Systems in Healthy Elderly Volunteers. Evid Based Complement Alternat Med 2012; 2012: 606424.
  29. Riedel G, Micheau J, Lam AG, Roloff EL, Martin SJ, Bridge H, de Hoz L, Poeschel B, McCulloch J, Morris RG. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 1999; 2(10): 898-905. https://doi.org/10.1038/13202
  30. Promsuban C, Limsuvan S, Akarasereenont P, Tilokskulchai K, Tapechum S, Pakaprot N. Bacopa monnieri extract enhances learning-dependent hippocampal long-term synaptic potentiation. Neuroreport 2017; 28(16): 1031-1035. https://doi.org/10.1097/WNR.0000000000000862
  31. Lindholm JS, Castren E. Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front Behav Neurosci 2014; 8: 143.
  32. Suzuki A, Fukushima H, Mukawa T, Toyoda H, Wu LJ, Zhao MG, Xu H, Shang Y, Endoh K, Iwamoto T, Mamiya N, Okano E, Hasegawa S, Mercaldo V, Zhang Y, Maeda R, Ohta M, Josselyn SA, Zhuo M, Kida S. Upregulation of CREB-mediated transcription enhances both short- and long-term memory. J Neurosci 2011; 31(24): 8786-8802. https://doi.org/10.1523/JNEUROSCI.3257-10.2011
  33. Kida S, Serita T. Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res Bull 2014; 105: 17-24. https://doi.org/10.1016/j.brainresbull.2014.04.011
  34. Konar A, Gautam A, Thakur MK. Bacopa monniera (CDRI-08) Upregulates the Expression of Neuronal and Glial Plasticity Markers in the Brain of Scopolamine Induced Amnesic Mice. Evid Based Complement Alternat Med 2015; 2015: 837012.
  35. Ortega-Martinez S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci 2015; 8: 46.
  36. Hazra S, Kumar S, Saha GK, Mondal AC. Reversion of BDNF, Akt and CREB in Hippocampus of Chronic Unpredictable Stress Induced Rats: Effects of Phytochemical, Bacopa Monnieri. Psychiatry Investig 2017; 14(1): 74-80. https://doi.org/10.4306/pi.2017.14.1.74
  37. Preethi J, Singh HK, Venkataraman JS, Rajan KE. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases ($PP1{\alpha}$, PP2A) in hippocampus. Cell Mol Neurobiol 2014; 34(4): 577-589. https://doi.org/10.1007/s10571-014-0042-0
  38. Preethi J, Singh HK, Rajan KE. Possible Involvement of Standardized Bacopa monniera Extract (CDRI-08) in Epigenetic Regulation of reelin and Brain-Derived Neurotrophic Factor to Enhance Memory. Front Pharmacol 2016; 7: 166.

Cited by

  1. Suppression of tumor growth and metastasis by ethanol extract of Angelica dahurica Radix in murine melanoma B16F10 cells vol.14, pp.1, 2020, https://doi.org/10.5582/bst.2019.01230
  2. The Neurocognitive Effects of Bacopa monnieri and Cognitive Training on Markers of Brain Microstructure in Healthy Older Adults vol.13, pp.None, 2018, https://doi.org/10.3389/fnagi.2021.638109
  3. Vinpocetine amended prenatal valproic acid induced features of ASD possibly by altering markers of neuronal function, inflammation, and oxidative stress vol.14, pp.11, 2018, https://doi.org/10.1002/aur.2597