• 제목/요약/키워드: cAMP response element binding

검색결과 88건 처리시간 0.026초

건지황의 급성코카인 투여에 의한 ERK, CREB 인산화에 미치는 효과 (Effect of Rehmannia glutinosa on Phosphorylation of ERK and CREB in Acute Cocaine-treated Rats)

  • 권기원;장은영;임채광;양재하;김광중
    • 동의생리병리학회지
    • /
    • 제26권3호
    • /
    • pp.281-286
    • /
    • 2012
  • The present study was designed to investigate the effect of Rehmannia glutinosa on phosphorylation of extracellular signal-regulated kinase(ERK) and cAMP response element-binding protein(CREB) in the acute cocaine-treated rats. Rats orally received vehicle or extract of Rehmannia glutinosa 1 h prior to saline (1 ml/kg, i.p.) or cocaine hydrochloride (20 mg/kg, i.p.) treatment. Rats were sacrificed 15 min after a single intraperitoneal injection of saline or cocaine. Rehmannia glutinosa at dose of 50 mg/kg significantly decreased phosphorylation of ERK, CREB and Elk-1 in the nucleus accumbens and striatum of the cocaine-treated rat brain by immunocytochemistry. These results suggest that Rehmannia glutinosa may contribute to the effects of cocaine on gene expression and on behaviors.

Beta-carboline alkaloids harmaline and harmalol induce melanogenesis through p38 mitogen-activated protein kinase in B16F10 mouse melanoma cells

  • Park, Sun-Young;Kim, Young-Hun;Kim, Young-Hee;Park, Geun-Tae;Lee, Sang-Joon
    • BMB Reports
    • /
    • 제43권12호
    • /
    • pp.824-829
    • /
    • 2010
  • Melanin synthesis is regulated by melanocyte specific enzymes and related transcription factors. $\beta$-carboline alkaloids including harmaline and harmalol are widely distributed in the environment including several plant families and alcoholic beverages. Presently, melanin content and tyrosinase activity were increased in melanoma cells by harmaline and harmalol in concentration- and time-dependent manners. Increased protein levels of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2 were also evident. In addition, immunofluorescence and Western blot analyses revealed harmaline and harmalol increased cAMP response element binding protein phosphorylation and microphthalmia-associated transcription factor expression. In addition to studying the signaling that leads to melanogenesis, roles of the p38 MAPK pathways by the harmaline and harmalol were investigated. Harmaline and harmalol induced time-dependent phosphorylation of p38 MAPK. Harmaline and harmalol stimulated melanin synthesis and tyrosinase activity, as well as expression of tyrosinase and TRP-1 and TRP-2 indicating that these harmaline and harmalol induce melanogenesis through p38 MAPK signaling.

Administration of Phytoceramide Enhances Memory and Up-regulates the Expression of pCREB and BDNF in Hippocampus of Mice

  • Lee, Yeonju;Kim, Jieun;Jang, Soyong;Oh, Seikwan
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.229-233
    • /
    • 2013
  • This study was aimed at investigating the possible effects of phytoceramide (Pcer) on learning and memory and their underlying mechanisms. Phytoceramide was orally administered to ICR mice for 7 days. Memory performances were assessed using the passive avoidance test and Y-maze task. The expressions of phosphorylated cAMP response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF) were measured with immunoblot. The incorporation of 5-bromo-2-deoxyuridine (BrdU) in hippocampal regions was investigated by using immunohistochemical methods. Treatment of Pcer enhanced cognitive performances in the passive avoidance test and Y-maze task. Immunoblotting studies revealed that the phosphorylated CREB and BDNF were significantly increased on hippocampus in the Pcer-treated mice. Immunohistochemical studies showed that the number of immunopositive cells to BrdU was significantly increased in the hippocampal dentate gyrus regions after Pcer-treatment for 7 days. These results suggest that Pcer contribute to enhancing memory and BDNF expression and it could be secondary to the elevation of neurogenesis.

Lactosylceramide α2,3-Sialyltransferase Is Induced Via a PKC/ERK/CREB-dependent Pathway in K562 Human Leukemia Cells

  • Choi, Hee-Jung;Park, Young-Guk;Kim, Cheorl-Ho
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.138-144
    • /
    • 2007
  • Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with $G{\ddot{o}}6976$, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with $G{\ddot{o}}6976$ and U0126. PMA stimulated the promoter activity of the 5'-flanking region from -177 to -83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around -143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors $G{\ddot{o}}6976$ and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.

Scopoletin from Cirsium setidens Increases Melanin Synthesis via CREB Phosphorylation in B16F10 Cells

  • Ahn, Mi-Ja;Hur, Sun-Jung;Kim, Eun-Hyun;Lee, Seung Hoon;Shin, Jun Seob;Kim, Myo-Kyoung;Uchizono, James A.;Whang, Wan-Kyunn;Kim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.307-311
    • /
    • 2014
  • In this study, we isolated scopoletin from Cirsium setidens Nakai (Compositae) and tested its effects on melanogenesis. Scopoletin was not toxic to cells at concentrations less than $50{\mu}M$ and increased melanin synthesis in a dose-dependent manner. As melanin synthesis increased, scopoletin stimulated the total tyrosinase activity, the rate-limiting enzyme of melanogenesis. In a cell-free system, however, scopoletin did not increase tyrosinase activity, indicating that scopoletin is not a direct activator of tyrosinase. Furthermore, Western blot analysis showed that scopoletin stimulated the production of microphthalmia-associated transcription factor (MITF) and tyrosinase expression via cAMP response element-binding protein (CREB) phosphorylation in a dose-dependent manner. Based on these results, preclinical and clinical studies are needed to assess the use of scopoletin for the treatment of vitiligo.

Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin

  • Lee, Ha-Ri;Jung, Joon Min;Seo, Ji-Yeon;Chang, Sung Eun;Song, Youngsup
    • Journal of Ginseng Research
    • /
    • 제45권5호
    • /
    • pp.555-564
    • /
    • 2021
  • Background: Ginsenosides of Panax ginseng are used to enhance skin health and beauty. The present study aimed to investigate the potential use of ginsenoside Rf (Rf) from Panax ginseng as a new anti-pigmentation agent. Methods: The anti-melanogenic effects of Rf were explored. The transcriptional activity of the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the expression levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (Tyrps) were evaluated in melanocytes and UV-irradiated ex vivo human skin. Results: Rf significantly inhibited Forskolin (FSK) or UV-stimulated melanogenesis. Consistently, cellular tyrosinase activity and levels of MITF, tyrosinase, and Tyrps were downregulated. Furthermore, Rf suppressed MITF promoter activity, which was stimulated by FSK or CREB-regulated transcription coactivator 3 (CRTC3) overexpression. Increased CREB phosphorylation and protein kinase A (PKA) activity induced by FSK were also mitigated in the presence of Rf. Conclusion: Rf can be used as a reliable anti-pigmentation agent, which has a scientifically confirmed and reproducible action mechanism, via inhibition of CREB/MITF pathway.

Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A- CREB1 pathway

  • Hyosun, Park;Sungsin, Jo;Mi-Ae, Jang;Sung Hoon, Choi;Tae-Hwan, Kim
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.627-632
    • /
    • 2022
  • Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts.

Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells

  • Seung Yeon Sohn;Thin Thin San;Junhyung Kim;Hyun-Jung Kim
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.65-76
    • /
    • 2024
  • Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.

Transcriptional regulation of genetic variants in the SLC40A1 promoter

  • Seung Yeon Ha;Jin-Young Kim;Ji Ha Choi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권2호
    • /
    • pp.113-120
    • /
    • 2024
  • Solute carrier 40A1 (SLC40A1) encodes ferroportin, which is the only known transmembrane protein that exports elemental iron from mammalian cells and is essential for iron homeostasis. Mutations in SLC40A1 are associated with iron-overload disorders. In addition to ferroportin diseases, SLC40A1 expression is downregulated in various cancer types. Despite the clinical significance of the SLC40A1 transporter, only a few studies have investigated genetic variants in SLC40A1. The present study was performed to identify genetic variations in the SLC40A1 promoter and functionally characterize each variant using in vitro assays. We investigated four haplotypes and five variants in the SLC40A1 promoter. We observed that haplotype 3 (H3) had significantly lower promoter activity than H1, whereas the activity of H4 was significantly higher than that of H1. Luciferase activity of H2 was comparable to that of H1. In addition, four variants of SLC40A1, c.-1355G>C, c.-662C>T, c.-98G>C, and c.-8C>G, showed significantly increased luciferase activity compared to the wild type (WT), whereas c.-750G>A showed significantly decreased luciferase activity compared to the WT. Three transcription factors, cAMP response element-binding protein-1 (CREB-1), chicken ovalbumin upstream promoter transcription factor 1, and hepatic leukemia factor (HLF), were predicted to bind to the promoter regions of SLC40A1 near c.-662C>T, c.-98G>C, and c.-8C>G, respectively. Among these, CREB1 and HLF bound more strongly to the variant sequences than to the WT and functioned as activators of SLC40A1 transcription. Collectively, our findings indicate that the two SLC40A1 promoter haplotypes affect SLC40A1 transcription, which is regulated by CREB-1 and HLF.

Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS

  • Leem, Yea-Hyun;Park, Jin-Sun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.295-302
    • /
    • 2021
  • Microglial priming is the process of microglial proliferation and activation in response to neurodegeneration and abnormal protein accumulation. Priming makes microglia susceptible to secondary inflammatory stimuli and causes exaggerated inflammatory responses. In the present study, we established a microglial priming model in mice by administering a single injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg). MPTP induced microglial activation without dopaminergic degeneration; however, subsequent treatment with a sub-toxic dose of lipopolysaccharides (LPS) induced an amplified inflammatory response and caused nigrostriatal dopaminergic degeneration. These pathological and inflammatory changes, including microglial activation and dopaminergic cell loss in the substantia nigra (SN) area were reversed by papaverine (PAP) administration. In addition, MPTP/LPS enhanced interleukin-1β (IL-1β) expression and processing via nod-like receptor protein 3 (NLRP3) inflammasome activation in the SN region of mice. However, PAP treatment suppressed inflammasome activation and subsequent IL-1β maturation. Moreover, PAP inhibited nuclear factor-κB (NF-κB) and enhanced cAMP-response element binding protein (CREB) activity in the SN of MPTP/LPS mice. These results suggest that PAP inhibits the activation of NLRP3 inflammasome by modulating NF-κB and CREB signaling pathways, which results in reduced microglial activation and neuronal cell death. Thus, PAP may be a potential candidate for the treatment of Parkinsons's disease, which is aggravated by systemic inflammation.