• Title/Summary/Keyword: c-Si interface

Search Result 646, Processing Time 0.029 seconds

EFFECTS OF DENTIN SURFACE WETNESS OR DESICCATION AFTER ACID ETCHING ON DENTIN BONDING (산부식후 상아질 표면의 습윤 또는 건조가 상아질 결합에 미치는 영향)

  • Yang, Won-Kyung;Kwon, Hyuk-Choon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.243-253
    • /
    • 2000
  • The purpose of this in vitro study was to evaluate dentin bonding by two different dentin bonding systems(DBS) using acetone based primer or adhesive [All Bond 2(AB2), One Step(OS)] when they were applied by wet or dry bonding technique. Morphology of resin-dentin interface and hybrid layer thickness(HLT) were investigated using Confocal Laser Scanning Microscope(CLSM) and compared to shear bond strength(SBS). 72 extracted sound human molars were randomly divided into 4 groups of 18 teeth each - Group 1.(AW); AB2 by wet bonding. Group 2(AD); AB2 by dry bonding. Group 3.(OW); OS by wet bonding, Group 4.(OD); OS by dry bonding. In 6 teeth of each group, notch-shaped class V cavities(depth 2mm) were prepared on buccal and lingual surface at the cementoenamel juction(12 cavities per group). To obtain color contrast in CLSM observation, bonding resins of each DBS were mixed with rhodamine B and primer of AB2 was mixed with sodium fluorescein. Prepared teeth of each group were treated with AB2, OS, respectively according to the manufacturer's instructions except for dentin surface moisture treatment after acid etching. In group 1 and 3, after acid etching, excess water was removed with wet tissue(Kimwipes), leaving consistently shiny, visibly hydrated dentin surface. In group 2 and 4, dentin surface was dried for 10 seconds at 1 inch distance. The treated teeth were then packed with composite resin(${\AE}$litefil) and light-cured. 12 microscopic samples($60{\sim}80{\mu}m$ thickness) of each group were obtained after longitudinal section and grinding(Exakt cutting and grinding system). Morphological investigation of resin-dentin interface and HLT measurement using CLSM were done. For measurement of SBS, remaining 12 teeth of each group were flattened occlusally to remove all enamel and grinded to 500 grit SiC(Pedemet Specimen Preparation Equipment). After applying DBS on the exposed dentin surface, composite resin was applied in the shape of cylinder, which has 5mm diameter, 1.5mm thickness, and light cured. SBS was measured using Instron with a crosshead speed of 0.5mm/min. It was concluded as follows, 1. HLT of AW(mean: $2.59{\mu}m$) was thicker than any other group, and followed by AD, OW, OD in descending order(mean; 2.37, 2.28, $1.92{\mu}m$). Only OD had statistically significant differences(p<0.05) to AW and AD. 2. There were intimate contact of resin and dentin at the interface in wet bonding groups, but gaps or irregular interfaces were observed in dry bonding groups. 3. The length, diameter, density of resin tags were various even in the same group without significant differences between groups and lots of adhesive lateral branches were observed. 4. There were no statistically significant difference of SBS between AB2 and OS, but SBS of wet bonding groups were significantly higher(p<0.05) than dry bonding groups. 5. There were no consistent relationships between HLT and SBS.

  • PDF

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

Annelaing Effects on the Dielectric Properties of the (Ba, Sr) $TiO_3$Films on $RuO_2$Bottom Electrodes

  • Park, Young-Chul;Lee, Joon;Lee, Byung-Soo
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.274-278
    • /
    • 1997
  • (Ba, Sr) TiO$_3$(BST) thin films were prepared on RuO$_2$/Si substrates by rf magnetron sputtering and annealing was followed at temperatures ranging from 550 to 80$0^{\circ}C$ in $N_2$or $O_2$atmosphere. The effects of annealing conditions on the properties of BST film deposited on RuO$_2$bottom electrodes were investigated. It was found that the crystallinity. surface roughness, and grain size of BST films vary with the annealing temperature but they are not dependent upon the annealing atmosphere. The flat region in the current-voltage (I-V) curves of BST capacitors shortened with increasing annealing temperature under both atmospheres. This is believed to be due to the lowering of potential barrier caused by unstable interface and the increase of charge The shortening of the flat region by $O_2$annealing was more severe than that by $N_2$-annealing. As a result, there was no flat region when the films were annealed at 700 and 80$0^{\circ}C$ in $O_2$atmosphere. The dielectric properties of BST films were improved by annealing in either atmosphere. however, a degradation with frequency was observed when the films were annealed at relatively high temperature under $O_2$atmosphere.

  • PDF

A High-Resolution Transmission Electron Microscopy Study of the Grain Growth of the Crystalline Silicon in Amorphous Silicon Thin Films (비정질 실리콘 박막에서 결정상 실리콘의 입자성장에 관한 고분해능 투과전자현미경에 의한 연구)

  • 김진혁;이정용;남기수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.85-94
    • /
    • 1994
  • A high-resolution transmission electron microscopy study of the solid phase crystallization of the amorphous silicon thin films, deposited on SiOS12T at 52$0^{\circ}C$ by low pressure chemical vapor deposition and annealed at 55$0^{\circ}C$ in a dry N$_{2}$ ambient was carried out so that the arrangement of atoms in the crystalline silicon and at the amorphous/crystalline interface of the growing grains could be understood on an atomic level. Results show that circular crystalline silicon nuclei have formed and then the grains grow to an elliptical or dendritic shape. In the interior of all the grains many twins whose{111} coherent boundaries are parallel to the long axes of the grains are observed. From this result, it is concluded that the twins enhance the preferential grain growth in the <112> direction along {111} twin planes. In addition to the twins. many defect such as intrinsic stacking faults, extrinsic stacking faults, and Shockley partial dislocations, which can be formed by the errors in the stacking sequence or by the dissociation of the perfect dislocation are found in the silicon grain. But neither frank partial dislocations which can be formed by the condensation of excess silicon atoms or vacancies and can form stacking fault nor perfect dislocations which can be formed by the plastic deformation are observed. So it is concluded that most defects in the silicon grain are formed by the errors in the stacking sequence during the crystallization process of the amorphous silicon thin films.

  • PDF

A study on interfacial characteristics of Ni-Cr alloy by Nb content for Porcelain Fused to Metal Crown (금속소부도재관용 Ni-Cr 합금에 첨가된 Nb이 계면특성에 미치는 영향)

  • Kim, Chi-Young;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.97-104
    • /
    • 2005
  • The effect of Nb on interfacial bonding characteristics of Ni-Cr alloy for porcelain fused to metal crown (PFM) has been studied in order to investigate oxide layer. A specimens, which is 0.8mm in thickness, were fired at 1,000$^{\circ}C$ with four tests such as air, vacuum, air for 5 minutes and vacuum for 5 minutes in order to examine an oxide behavior of alloy surface generated by the adding of Nb to be controlled at a rate of 0, 1, 3 and 5. It observed oxide film form of the fired specimens with optical microscope and scanning electron microscope (SEM), and chemical formation of them with energy disperse X-ray spectroscopy (EDX). The other specimens, which is 2mm in thickness, were fired at 1,000$^{\circ}C$ with air and vacuum in order to analyze the diffusion behaviors of alloy-porcelain interface by X-ray dot mapping. The results of this study were as follows: 1. The observation of microstructure of specimens by SEM showed that the more Nb content is high, the more much intermediate compound of rich Nb is observed. 2. The surface morphology of oxide film is most dense in 3% Nb. The heat treatment in air constitutes denser oxide film than heat treatment under vacuum. 3. The diffusion behavior of oxide layer by X-ray dot mapping showed that Si, Al of porcelain diffuse toward metal.

  • PDF

A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure (기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성)

  • Park, Heung-Il;Kim, Chang-Up;Huh, Bo-Young;Lee, Sung-Youl;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

Physics-based Algorithm Implementation for Characterization of Gate-dielectric Engineered MOSFETs including Quantization Effects

  • Mangla, Tina;Sehgal, Amit;Saxena, Manoj;Haldar, Subhasis;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.159-167
    • /
    • 2005
  • Quantization effects (QEs), which manifests when the device dimensions are comparable to the de Brogile wavelength, are becoming common physical phenomena in the present micro-/nanometer technology era. While most novel devices take advantage of QEs to achieve fast switching speed, miniature size and extremely small power consumption, the mainstream CMOS devices (with the exception of EEPROMs) are generally suffering in performance from these effects. In this paper, an analytical model accounting for the QEs and poly-depletion effects (PDEs) at the silicon (Si)/dielectric interface describing the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of MOS devices with thin oxides is developed. It is also applicable to multi-layer gate-stack structures, since a general procedure is used for calculating the quantum inversion charge density. Using this inversion charge density, device characteristics are obtained. Also solutions for C-V can be quickly obtained without computational burden of solving over a physical grid. We conclude with comparison of the results obtained with our model and those obtained by self-consistent solution of the $Schr{\ddot{o}}dinger$ and Poisson equations and simulations reported previously in the literature. A good agreement was observed between them.

Crystallopraphic Growth Orientation of Polycrystalline HSG Silicon Film (반구형 다결정 실리콘 박막의 결정학적 성장방위)

  • Sin, Dong-Won;Park, Chan-Ro;Park, Chan-Gyeong;Kim, Jong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.750-758
    • /
    • 1994
  • The purpose of present study is to find out the formation mechanism of hemi-spherical grained(HSG) polysilicon film. Silicon film was deposited using LPCVD. Polycrystalline silicon film was deposited at $575^{\circ}C$ contained crystalline HSG in the amorphous matrix phase. The crystalline HSG can be categorized into two grains : lower grains and upper grains. Lower grains are located at interface between silicon dioxide and silicon film, and upper grains are located at surface. The growth orientations of HSG were identified as (311) or (111) directions for lower grains and perferentially (110) direction for upper grains. This difference of growth orientations seems to be caused by the difference of formation mechanisms. That is, lower grain is formed by soild phase crystallization, on the other hand, upper grain is formed by surface diffusion of silicon atoms. It was thus, proposed that the formation of practical HSG polysilicon film is mainly controlled by surface diffusion of silicon atoms.

  • PDF

Preparation and Optical Properties of Polarizing Film Based on Poly(vinyl Alcohol) Dyed by Reactive Dichroic Dyes Using Organic Solvents (유기 용매를 사용한 반응성 이색성 염료의 염착에 의한 폴리비닐알코올계 편광필름의 제조 및 광학특성)

  • Choi, E-Joon;Choi, Seung Sock;Kim, Eun-Chol;Kim, Si Min;Back, Sang-Hyun
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.131-136
    • /
    • 2012
  • In this study, commercial poly(vinyl alcohol) (PVA) film was dyed with reactive dichroic dyes under mild conditions using organic solvents in stead of strong basic aqueous solution. After drawing of 500% of this PVA film, the polarizing efficiency and the single piece transmittance were measured. The degree of saponification of the commercialized PVA film was determined by using NMR and FT-IR spectromety. The commercial PVA film, with ca. 100% of the degree of saponification determined by NMR spectrometry, was dyed with the reactive dichroic dyes, which have 3,5-dichloro-2,4,6-triazine moiety. As a result, we found that the PVA film dyed with the reactive congo red showed relatively good polarization efficiency, and the PVA film dyed with the reactive direct black 22 exhibited relatively good single piece transmittance.