• Title/Summary/Keyword: c-Si

Search Result 10,094, Processing Time 0.036 seconds

Synthesis of Si-SiC-CuO-C Composite from Silicon Sludge as an Anode of Lithium Battery (실리콘 슬러지로부터 리튬전지(電池) 음극용(陰極用) Si-SiC-CuO-C 복합물의 합성(合成))

  • Jeong, Goo-Jin;Jang, Hee-Dong;Lee, Churl-Kyoung
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2010
  • As a recycling of Si sludge from Si wafer process, a Si-SiC-CuO-C composite material was synthesized and investigated as an anode material for lithium batteries. The Si sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by organic washing, magnetic separation, and acid washing. The Si-SiC-CuO-C composite from the recovered Si-SiC mixture was prepared by high-energy mechanical milling. According to the electrochemical tests such as charge-discharge capacity and cycling behavior, it showed the improved cycle performance. The SiC and CuO-related phases were presumed to restrain the volume expansion of the anode and Fe, however, should be removed below 10 ppm prior to synthesis of the composite because it caused the capacity loss of the active material itself.

Mechanical and Tribological Properties of Si-SiC-Graphite Composites (Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF

Roles of i-SiC Buffer Layer in Amorphous p-SiC/i-SiC/i-Si/n-Si Thin Film Solar Cells (비정질 p-SiC/i-SiC/i-Si/n-Si 박막 태양전지에서 i-SiC 완충층의 역할)

  • Kim, Hyun-Chul;Shin, Hyuck-Jae;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1155-1159
    • /
    • 1999
  • Thin film solar cells on a glass/$SnO_2$ substrate with p-SiC/i-Si/n-Si heterojunction structures were fabricated using a plasma-enhanced chemical-vapor deposition system. The photovoltaic properties of the solar cells were examined with varying the gas phase composition, x=$CH_4/\;(SiH_4+CH_4)$, during the deposition of the p-SiC layer. In the range of x=0~0.4, the efficiency of solar cell increased because of the increased band gap of the p-SiC window layer. Further increase in the gas phase composition, however, led to a decrease in the cell efficiency probably due to in the increased composition mismatch at the p-SiC/i-Si layers. As a result, the efficiency of a glass/$SnO_2$/p-SiC/i-SiC/i-Si/n-Si/Ag thin film solar cell with $1cm^2$ area was 8.6% ($V_{oc}$=0.85V, $J_{sc}$=16.42mA/$cm^2$, FF=0.615) under 100mW/$cm^2$ light intensity.

  • PDF

Phase Equilibria and Reaction Paths in the System Si3N4-SiC-TiCxN1-x-C-N

  • H.J.Seifert
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.18-35
    • /
    • 1999
  • Phase equilibria in the system Si3N4-TiC-TiCxN1-x-C-N were determined by thermodynamic calculations (CALPHAD-method). The reaction peaction paths for Si3N4-TiC and SiC-TiC composites in the Ti-Si-C-n system were simulated at I bar N2-pressure and varying terpreatures. At a temperature of 1923 K two tie-triangles (TiC0.34N0.66+SiC+C and TiC0.13N0.87+SiC+Si3N4) and two 2-phase fieds (TiCxN1-x+SiC; 0.13

Characteristics of porous 3C-SiC thins formed by anodization (양극 산화법으로 형성된 다공질 3C-SiC 막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.45-45
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS (Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 ~ 90 nm was achieved at 7.1 $mA/cm^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 $cm^{-1}$. PL shows the band gap enegry of thin film (2.5 eV) and porous 3C-SiC (2.7 eV).

  • PDF

Interfacial Characteristics of $\beta$-SiC Film Growth on (100) Si by LPCVD Using MTS (MTS를 사용한 LPCVD 법에 의한 (100)Si 위의 $\beta$-SiC 증착 및 계면특성)

  • 최두진;김준우
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.825-833
    • /
    • 1997
  • Silicon carbide films were deposited by low pressure chemical vapor deposition(LPCVD) using MTS(CH3SICl3) in hydrogen atmosphere on (100) Si substrate. To prevent the unstable interface from being formed on the substrate, the experiments were performed through three deposition processes which were the deposition on 1) as received Si, 2) low temperature grown SiC, and 3) carbonized Si by C2H2. The microstructure of the interface between Si substrates and SiC films was observed by SEM and the adhesion between Si substrates and SiC films was measured through scratch test. The SiC films deposited on the low temperature grown SiC thin films, showed the stable interfacial structures. The interface of the SiC films deposited on carbonized Si, however, was more stable and showed better adhesion than the others. In the case of the low temperature growth process, the optimum condition was 120$0^{\circ}C$ on carbonized Si by 3% C2H2, at 105$0^{\circ}C$, 5 torr, 10 min, showed the most stable interface. As a result of XRD analysis, it was observed that the preferred orientation of (200) plane was increased with Si carbonization. On the basis of the experimental results, the models of defect formation in the process of each deposition were compared.

  • PDF

Effect of the C/Si Molar Ratio on the Characteristics of β-SiC Powders Synthesized from TEOS and Phenol Resin (C/Si 몰 비가 TEOS와 페놀수지를 출발원료 사용하여 합성된 β-SiC 분말의 특성에 미치는 영향)

  • Youm, Mi-Rae;Park, Sang-Whan;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • ${\beta}$-SiC powders were synthesized by a carbothermal reduction process using $SiO_2$-C precursors fabricated by a sol-gel process using phenol resin and TEOS as starting materials for carbon and Si sources, respectively. The C/Si molar ratio was selected as an important parameter for synthesizing SiC powders using a sol-gel process, and the effects of the C/Si molar ratio (1.4-3.0) on the particle size, particle size distribution, and yield of the synthesized ${\beta}$-SiC powders were investigated. It was found that (1) the particle size of the synthesized ${\beta}$-SiC powders decreased with an increase in the C/Si molar ratio in the $SiO_2$-C hybrid precursors, (2) the particle size distribution widened with an increase in the C/Si molar ratio, and (3) the yield of the ${\beta}$-SiC powder production increased with an increase in the C/Si molar ratio.

Physical Characteristics of Polycrystalline 3C-SiC Thin Films Grown by LPCVD (LPCVD로 성장된 다결정 3C-SiC 박막의 물리적 특성)

  • Chung Gwiy-Sang;Kim Kang-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.732-736
    • /
    • 2006
  • This paper describes the physical characterizations of polycrystalline 3C-SiC thin films heteroepitaxially grown on Si wafers with thermal oxide, In this work, the 3C-SiC film was deposited by LPCVD (low pressure chemical vapor deposition) method using single precursor 1, 3-disilabutane $(DSB:\;H_3Si-CH_2-SiH_2-CH_3)\;at\;850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_2$ were measured by SEM (scanning electron microscope). Finally, residual strain was investigated by Raman scattering and a peak of the energy level was less than other type SiC films, From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS (Micro-Electro-Mechanical-Systems) applications.

Effect of Transition Metal on Properties of SiC Electroconductive Ceramic Composites (SIC 도전성 세라믹 복합체의 특성에 미치는 천이금속의 영향)

  • 신용덕;오상수;주진영
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.352-357
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% TiB$_2$ and using 61vo1.% SiC - 39vo1.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 180$0^{\circ}C$ for 4 hours. Reactions between SiC and transition metal TiB$_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), TiB$_2$ and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-TiB$_2$, and SiC(2H), WC and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-WC composites. $\beta$\$\longrightarrow$$\alpha$-SiC phase transformation was ocurred on the SiC-TiB$_2$, but $\alpha$\$\longrightarrow$$\beta$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the vicker's hardness, the flexural strength and the fracture toughness showed respectively value of 96.2%, 13.34GPa, 310.19Mpa and 5.53Mpaㆍml/2 in SiC-WC composites. The electrical resistivity of the SiC-TiB$_2$ and the SiC-WC composites is all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$. 2.64${\times}$10-2/$^{\circ}C$ of PTCR of SiC-WC was higher than 1.645${\times}$10-3/$^{\circ}C$ of SiC-TiB$_2$ composites.posites.

Crystal growth of polyctystalline 3C-SiC thin films on AlN buffer layer (AlN 완충층을 이용한 다결정 3C-SiC 박막의 결정성장)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.333-334
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on SiOz and AlN substrates, respectively. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_2$ and AlN were not different. However, their electron mobilities were $7.65\;cm^2/V.s$ and $14.8\;cm^2/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_2$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

  • PDF