In order to understand the difference in SiC deposition between the $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems, we calculate the phase stability among ${\beta}$-SiC, graphite and silicon. We constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure (P), temperature (T) and gas composition (C) as variables. Both P-T-C diagrams showed a very steep phase boundary between the SiC+C and SiC region perpendicular to the H/Si axis, and also showed an SiC+Si region with a H/Si value of up to 6700 in the $C_3H_8-SiCl_4-H_2$, and 5000 in the $CH_3SiCl_3-H_2$ system. This difference in phase boundaries is explained by the ratio of Cl to Si, which is 4 for the $C_3H_8-SiCl_4-H_2$ system and 3 for the $C_3H_8-SiCl_4-H_2$ system. Because the C/Si ratio is fixed at 1 in the $CH_3SiCl_3-H_2$ system while it can be variable in the $C_3H_8-SiCl_4-H_2$ system, the functionally graded material is applicable for better mechanical bonding during SiC coating on graphite substrate in the $C_3H_8-SiCl_4-H_2$ system.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.8
no.4
/
pp.640-644
/
1998
We have fabricated Sb/SiC(4H) Schottky barrier diode (SBD) of which characteristics compared with that of Ti/SiC(4H) SBD. The donor concentration of the n-type SiC(4H) obtained by capacitance-voltage (C-V) measurement was about $2.5{\times}10 ^{17}{\textrm}cm^{-3}$. The ideality factors of 1.31 was obtained from the slope of forward current-voltage (I-V) characteristics of Sb/SiC(4H) SBD at low current density. The breakdown field of Sb/SiC(4H) SBD under the reverse bias voltage was about $4.4{\times}10^2V$/cm. The built-in potential and the Schottky barrier height (SBH) of Sb/SiC(4H) SBD were 1.70V and 1.82V, respectively, which were determined by the analysis of C-V characteristics. The Sb/SiC(4H) SBH of 1.82V was higher than Ti/SiC(4H) SBH of 0.91V. However, the current density and reverse breakdown field of Sb/SiC(4H) were low as compared with those of Ti/SiC(4H). The Sb/SiC(4H), as well as the Ti/SiC(4H), can be utilized as the Shottky barrier contact for the high-power electronic device.
Journal of the Korean Institute of Telematics and Electronics D
/
v.35D
no.11
/
pp.70-77
/
1998
Ni/SiC Schottky diodes have been fabricated using epitaxial 4H-SiC and 6H-SiC wafers. The epitaxial n-type layers were grown on $n^{+}$ substrates, with a doping density of 4.0$\times$10$^{16}$ c $m^{-3}$ and a thickness of 10${\mu}{\textrm}{m}$. Oxide-termination has been adopted in order to obtain high breakdown voltage and low leakage current. The fabricated Ni/4H-SiC and Ni/6H-SiC Schottky barrier diodes show excellent rectifying characteristics up to the measured temperature range of 55$0^{\circ}C$. In case of oxide-terminated Schottky barrier diodes, breakdown voltage of 973V(Ni/4H-SiC) and 920V(Ni/6H-SiC), and a very low leakage current of less than 1nA at -800V has been observed at room temperature. On non-terminated Schottky barrier diodes, breakdown voltages were 430V(Ni/4H-SiC) and 160v(Ni/6H-SiC). At room temperature, SBH(Schottky Barrier Height), ideality factor and specific on-resistance were 1.55eV, 1.3, 3.6$\times$10$^{-2}$$\Omega$.$\textrm{cm}^2$ for Ni/4H-SiC Schottky barrier diodes, and 1.24eV, 1.2, 2.6$\times$10$^{-2}$$\Omega$.$\textrm{cm}^2$/ for Ni/SH-SiC Schottky barrier diodes, respectively. These results show that both Ni/4H-SiC and Ni/6H-SiC Schottky barrier diodes are very promising for high-temperature and high power applications.s..
Journal of the Korean Crystal Growth and Crystal Technology
/
v.7
no.2
/
pp.197-206
/
1997
A SiC epilayer on the 6H-SiC crystal substrate was grown by chemical vapor deposition (CVD). The crystal structure of the SiC epilayer was investigated by using the X-ray diffraction patterns and the Roman scattering spectroscopy. The SiC epilayer on the 6H-SiC substrate was grown to be homoepilayer by CVD. In order to distinguish a certain SiC polytype mixed in the SiC crystal grown by the modified Lely method, we have calculated the X-ray diffraction intensities and Brags angles of the typical SiC crystal powders. By comparing the measured X-ray diffraction pattern with the calculated ones, it was identified that the SiC crystal grown by the modified Lely method was the 6H-SiC crystal mixed some 15R-SiC.
This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.13
no.6
/
pp.290-296
/
2003
The heteroepitaxial growth of crystalline 3C-SiC on 6H-SiC substrates using high purity silane ($SiH_4$) and prophane ($C_3H^8$) was carried out by thermal chemical vapor deposition, and growth characteristics were investigated in this study. In case that the flow ratio of C/Si and flow rate of $H_2$ were 4.0 and 5.0 slm, respectively, the growth rate of epilayers was about 1.8 $\mu$m/h at growth temperature of $1200^{\circ}C$. The Nomarski surface morphology, X-ray diffraction, Raman spectroscopy, and photoluninescence of grown epilayers were measured to investigate the crystallinity. In this study, the high quality of crystalline 3C-SiC heteropitaxial layers was observed at growth temperature of above $1150^{\circ}C$.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.322.1-322.1
/
2014
Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.
Kim, Yu-Taek;Jeong, Sun-Deuk;Lee, Seong-Cheol;Park, Jin-Ho
Korean Journal of Materials Research
/
v.8
no.6
/
pp.477-483
/
1998
$SiC_{4}$$C_{3}$$H_{ 8}$$H_{2}$와 $C_{3}$$H_{8}$$H_{2}$, $CH_{3}$$SiCI_{3}$$CH_{4}$$H_{2}$계를 사용하여 흑연기판 위에 SiC와 SiC/C FGM을 CVD법에 의해 코팅하였다. $SiCI_{4}$$C_{3}$$H_{8}$$H_{2}$ 계에서 SiC 증착 시 바람직한 수소의 비는 10-30사이였고 결정 배향성은 입력가스의 탄소비에 따라 여러번의 대 반전이 일어났다. 성장조건을 {111} 배향성을 갖도록 조절하는 것이 FGM층간 접착상태를 증진시킬 수 있는 방법으로 판단되었다. $CH_{3}$$SiCI_{3}$C$_{3}$$H_{8}$$H_{2}$ 계에서는 SiC와 C의 비율을 조절하기가 $SiCI_{4}$$C_{3}$$H_{8}$H_{2}$계를 사용했을 때 보다 용이하였고, FGM 단면 관찰에서 층간의 뚜렷한 경계를 발견할 수 없을 정도로 우수한 층간 접착상태를 보였다.
In this paper, we studied 4H-SiC CMOS that can be integrated with high-voltage SiC power devices. After designing the CMOS on a 4H-SiC substrate, we compared the electrical characteristics with the reliability of high temperature operation by TCAD simulation. In particular, it was confirmed that changing HfO2 as the gate dielectric for reliable operation at high temperatures improves the thermal properties compared to SiO2. By researching SiC CMOS devices, we can integrate high-power SiC power devices with SiC CMOS for excellent performance in terms of efficiency and cost of high-power systems.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.10
no.1
/
pp.5-12
/
2000
As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single- crystalline 6H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 6H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented ($3.5^{\circ}$tilt) substrates from the (0001) basal plane in the <110> direction with the Si-face side of the wafer. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, transmittance spectra, Raman spectroscopy, XRD, Photoluninescence (PL) and transmission electron microscopy (TEM) were utilized. The best quality of 6H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_3H_8$ 0.2 sccm & $SiH_4$ 0.3 sccm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.