• Title/Summary/Keyword: c/c composite

Search Result 3,904, Processing Time 0.033 seconds

Research on Separation Behavior Joint of Develop and Application in Sheet-Membrane Composite Waterproofing (시트-도막을 이용한 분리거동형 복합방수공법 개발 및 적용에 관한 연구)

  • Heo, Neung-Hoe;Kim, Dong-Bum;Oh, Je-Gon;Go, Gun-Woong;Go, Jang-Ryeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.165-166
    • /
    • 2014
  • The Composite waterproofing began to rise gradually 2000s in domestic. However, the sheet-membrane composite waterproofing method also acts as an abutment vulnerability that was a problem in a single method, and had the problem of damage to the formation of leakage paths. The existing non-overlap method, through vigorous research abutting sheet shall or could be developed to improve the seal performance of this method with the I-type joint coating material. Nevertheless, it has an integral top coat paint membrane and a sheet abutment limitation, damage to the upper membrane is damaged junction coating membranes has been generated. In this study, a method that has a layer of insulation on the joint bond breaker concept development, and to determine the physical properties with insulated joints to determine the breaking off of the upper joint is damaged coating membrane and tensile performance.

  • PDF

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Organic-inorganic Nano Composite Membranes of Sulfonated Poly(Ether Sulfone-ketone) Copolymer and $SiO_2$ for Fuel Cell Application

  • Lee, Dong-Hoon;Park, Hye-Suk;Seo, Dong-Wan;Kim, Whan-Gi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.487-488
    • /
    • 2006
  • Novel bisphenol-based wholly aromatic poly(ether sulfone-ketone) copolymer containing pendant sulfonate groups were prepared by direct aromatic nucleophilic substitution polycondensation of 4,4-difluorobenzophenone, 2,2'-disodiumsulfonyl-4,4'-fluorophenylsulfone (40mole% of bisphenol A) and bisphenol A. Polymerization proceeded quantitatively to high molecular weight in N-methyl-2-pyrrolidinone at $180^{\circ}C$. Organic-inorganic composite membranes were obtained by mixing organic polymers with hydrophilic $SiO_2$ (ca. 20nm) obtained by sol-gel process. The polymer and a series of composite membranes were studied by FT-IR, $^1HNMR$, differential scanning calorimetry (DSC) and thermal stability. The proton conductivity as a function of temperature decreased as $SiO_2$ content increased, but methanol permeability decreased. The nano composite membranes were found to posse all requisite properties; Ion exchange capacity (1.2meq./g), glass transition temperatures $(164-183\;^{\circ}C)$, and low affinity towards methanol $(4.63-1.08{\times}10^{-7}\;cm^2/S)$.

  • PDF

Fabrication and Characterization of a Flexible PVDF Fiber-based Polymer Composite for High-performance Energy Harvesting Devices

  • Nguyen, Duc-Nam;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.205-215
    • /
    • 2019
  • A flexible polyvinylidene fluoride (PVDF)/polydimethylsiloxane (PDMS) composite prototype with high piezoelectricity and force sensitivity was constructed, and its huge potential for applications such as biomechanical energy harvesting, self-powered health monitoring system, and pressure sensors was proved. The crystallization, piezoelectric, and electrical properties of the composites were characterized using an X-ray diffraction (XRD) experiment and customized experimental setups. The composite can sustain up to 100% strain, which is a huge improvement over monolithic PVDF fibers and other PVDF-based composites in the literature. The Young's modulus is 1.64 MPa, which is closely matched with the flexibility of the human skin, and shows the possibility for integrating PVDF/PDMS composites into wearable devices and implantable medical devices. The $300{\mu}m$ thick composite has a 14% volume fraction of PVDF fibers and produces high piezoelectricity with piezoelectric charge constants $d_{31}=19pC/N$ and $d_{33}=34pC/N$, and piezoelectric voltage constants $g_{31}=33.9mV/N$ and $g_{33}=61.2mV/N$. Under a 10 Hz actuation, the output voltage was measured at 190 mVpp, which is the largest output signal generated from a PVDF fiber-based prototype.

An Experimental Study on the Strength of Two Serial Bolt-Fastened Composite Joints under Elevated Temperature and Humid Condition (고온다습 조건($82.2^{\circ}C$)에서 2열 볼트 체결 복합재 조인트의 강도에 관한 실험적 연구)

  • Kim, Hyo-Jin
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.30-36
    • /
    • 2009
  • The failure strengths and modes in carbon fiber reinforced polymeric composites, with two serial bolt-fastened composite joints, were investigated to evaluate the typical joint configurations of composite components. The parametric studies were performed experimentally at room temperature dry and elevated temperature wet, $82.2^{\circ}C$ on several different laminate configurations. Based on the experimental data presented, two basic load-displacements curves are observed. Each failure mode has the characteristic curve. It is showed that the bearing failure mode occurs in elevated temperature wet condition. It is analysed that the strength of bearing failure mode is not highly depending on the effective modulus of specimen. The failure strength at elevated temperature wet is decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 충격거동에 대한 확률분포 특성)

  • Ha, Seung-Chul;Kim, In-Gul;Lee, Seok-Je;Cho, Sang-Gyu;Jang, Moon-Ho;Choi, Ik-Hyeon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.18-22
    • /
    • 2009
  • In this paper, we examined impact force and impact behavior through low velocity impact tests of composite laminates. And through c-scan as nondestructive inspection, explored the damaged area being difficult to examine with the visual inspection. Through CAI tests, we also measured the compression strength of composite laminates subjected to low velocity impact. To examine the characteristics of impact behavior measured from low velocity impact test, nondestructive inspection, and CAI test, the simulated data are generated from the test data using Monte-Carlo simulation, then represented it by probability distribution. The testing results using visible stochastic distribution were examined and compared.

A Comparative Study on the Cyclic Behavior and Fatigue Life of Cast and Extruded SiC -Particulate - Reinforced Al-Si Composites (주조 및 압출가공된 SiC입자강화 알루미늄복합재의 피로거동 및 피로수명에 대한 비교 연구)

  • Go, Seung-Gi;Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.777-785
    • /
    • 2000
  • The low-cycle fatigue behaviors of cast AI-Si alloy and composite with reinforcement of SIC particles were compared with those of extruded unreinforced matrix alloy and composite in order to investigate the influence of cast and extrusion processes on the cyclic deformation and fatigue life. Generally, both cast and extruded composites including the unreinforced alloy exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. However, cast composite under a low applied cyclic strain showing no observable plastic strain exhibited cyclic softening behavior due to the cast porosities. The elastic modulus and yield strength of the cast composite were found to be quite comparable to those of the extruded composite, however, the extrusion process considerably improved the ductility and fracture strength of the composite by effectively eliminating the cast porosities. Low-cycle fatigue lives of the cast alloy and composite were shorter than those of the extruded counterparts. Large difference in life between cast and extruded composites was attributed to the higher influence of the cast porosities on the fatigue life of the composite than that of the unreinforced alloy material. A fatigue damage parameter using strain energy density effectively represented the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced alloy.

THE EFFECT OF CANAL FILLING SEALER TO RESIN CEMENT IN POST CEMENTATION (근관충전용 sealer의 성분이 포스트 세멘트시 레진 세멘트에 미치는 영향)

  • Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • The purpose of this study was to evaluate the effect of the canal filling sealer to resin cement When posts were cemented in the endodontically treated teeth, 86 incisors were used. The coronal portion of the teeth were removed at the cemento-enamel junction, every tooth was done treatment of canal. And the teeth was divided was into 12 groups. G : I a n : 7 Treatment : Z.P.C (1 day after Z.O.E. sealer) G : I b n : 7 Treatment : All-Bond (3 day after sealer) G : II a n : 8 Treatemt : Z.P.C (3 day after sealer) G : II b n : 7 Treatemt : All-Bond (3 day after sealer) G : III a n : 8 Treatemt : Z.P.C (7 day after sealer) G : III b n : 8 Treatemt : All-Bond (7 day after sealer) G : IV a n : 7 Treatemt : Z.P.C (1 day after Apexit sealer) G : IV b n : 7 Treatemt : All-Bond (1 day after sealer) G : V a n : 7 Treatemt : Z.P.C (3 day after sealer) G : V b n : 7 Treatemt : All-Bond (3 day after sealer) G : VI a n : 7 Treatemt : Z.P.C (7 day after sealer) G : VI a n : 7 Treatemt : All-Bond (7 day after sealer) Ready made stainless steel Para-post(PD-K-3) was cemented with Z.P.C. in subgroup a, and cemented with All-Bond & composite resin cement in subgroup b to depth 7mm. After 5 days at cementation of post, teeth with cemented posts were mounted on a retention jig and the failure loads of the specimens were measured by an Instron Universal Testing Machine. The results were as follows. 1. The results of failure loads were $15.5{\pm}7.1kg$ in group I b, $21.6{\pm}5.4kg$ in group II b and $20.1{\pm}18.1kg$ in group III b, and there was no statistically significant , difference between each group(p>0.05). 2. The results of failure loads were $19.0{\pm}6.7kg$ in group IV b, $17.3{\pm}6.5kg$ in group V b.and $18.9{\pm}7.9kg$ in group VI b and there was no significant difference between each other(p>0.05). 3. In same condition, the failure load of subgroup a was largely higher the subgroup b. But there was no significant difference between each other(p>0.05).

  • PDF

Effects of Annealing Heat Treatment Conditions on Phase Transformation of Nitinol Shape Memory Alloy (어닐링 열처리 조건에 따른 NITINOL형상기억합금의 상변환 특성 연구)

  • Yoon Sung Ho;Yeo Dong Jin
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.38-45
    • /
    • 2005
  • Phase transformation behaviors and crystal structures of Nitinol shape memory alloy $(54.5Ni-45.5Tiwt\%)$ are investigated by varying annealing heat treatment conditions through DSC (Differential Scanning Calorimetry) and XRD (X-Ray Diffraction). Annealing heat treatment conditions were considered as heat treated times of 5min, 15min. 30m1n, and 45min, as well as heat treated temperatures of $400^{\circ}C,\;500^{\circ}C,\;525^{\circ}C,\;550^{\circ}C,\;575^{\circ}C,\;600^{\circ}C,\;700^{\circ}C,\;800^{\circ}C,\;and\;900^{\circ}C$ According to the results, annealing heat treatment conditions such as heat treated times and heat treated temperatures were found to affect significantly on phase transformation behaviors and crystal structures of Nitinol shape memory alloy.