• 제목/요약/키워드: c/c composite

검색결과 3,904건 처리시간 0.036초

고온가압소결을 이용한 YSZ-TiC 세라믹스 복합체의 제조와 특성 (Fabrication and Characteristics of YSZ-TiC Ceramics Composite by Using Hot Pressing)

  • 최재형;최지영;김성원
    • 한국분말재료학회지
    • /
    • 제28권5호
    • /
    • pp.381-388
    • /
    • 2021
  • Zirconia has excellent mechanical properties, such as high fracture toughness, wear resistance, and flexural strength, which make it a candidate for application in bead mills as milling media as well as a variety of components. In addition, enhanced mechanical properties can be attained by adding oxide or non-oxide dispersing particles to zirconia ceramics. In this study, the densification and mechanical properties of YSZ-TiC ceramic composites with different TiC contents and sintering temperatures are investigated. YSZ - x vol.% TiC (x=10, 20, 30) system is selected as compositions of interest. The mixed powders are sintered using hot pressing (HP) at different temperatures of 1300, 1400, and 1500℃. The densification behavior and mechanical properties of sintered ceramics, such as hardness and fracture toughness, are examined.

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • 제20권1호
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Photoluminescent Properties of Eu(III) in the Composite Heterocyclic Ligands/Crown Ether Systems

  • Liu, Hong Guo;Jang, Ki-Wan;Feng, Xu Sheng;Kim, Chang-Dae;Yoo, Young-Jae;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1969-1974
    • /
    • 2005
  • Composite systems of $Eu(phen)_2Cl_3{(H_2O)}_2$, Eu(DN-bpy)$(phen)Cl_3{(H_2O)}_2$ and Eu(DB-bpy)$(phen)Cl_3{(H_2O)}_2$ (DNbpy: $4,4^\prime$-Dinonyl-$2,2^\prime$-dipyridyl; DB-bpy: $4,4^\prime$-Di-tert-butyl-$2,2^\prime$-dipyridyl) with crown ethers of Benzo-15-crown-5 (B15C5), Benzo-18-crown-6 (B18C6), 18-crown-6 (18C6), Dibenzo-18-crown-6 (DB18C6) and Dibenzo-24-crown-8 (DB24C8) were fabricated successfully and characterized by using photoluminescent spectroscopy and luminescent lifetime measurements. All composites formed show high luminescence mainly in red region. It was found that the heterocyclic ligands such as phen, DN-bpy and DB-bpy as well as the crown ethers have great influences on the photoluminescent properties of $Eu^{3+}$ ion. The environment around $Eu^{3+}$ ion in the composite systems changes greatly,presumably the variation of the first coordination sphere. The $Eu^{3+}$ ion occupies higher symmetrical environment and in more than one kind of symmetrical site in the composite systems studied in this work.

망간산화물 정극의 합제조성에 따른 전자전도특성 및 집전체와의 접착특성 (Characteristics of Electric Conductivity and Adhesion with Current Collector According to Composition of $LiMn_2O_4$ Cathode)

  • 엄승욱;도칠훈;문성인
    • 전기화학회지
    • /
    • 제4권1호
    • /
    • pp.1-5
    • /
    • 2001
  • 리튬이온전지용 정극활물질인$LiMn_2O_4$ 정극복합제의 조성을 최적화 하기 위하여 활물질, 도전재, 결합제 등의 비표면적 비율을 인자로 이용하였다. 결합제는 최소한의 양으로 사용되어 도포 후, 그리고 전해액에 함침 되었을 때에도 집전체와의 접착력을 유지할 수 있어야 하며, 이를 위해서는 $130^{\circ}C$의 열압착이 효과적이었다. 결합제의 최소 필요량은 활물질 및 도전재의 표면적에 따라 변하는 값으로, 활물질 및 도전재의 전체표면적에 대한 결합제의 무게비율이 $1.1\%$ 이상일 때 탈리가 일어나지 않았다. 정극의 전자전도도를 증가시킴으로서 eel떠 내부저항을 낮출 수 있었으며, 전자전도도를 0.019mS/cm에서 0.036mS/cm로 증가시킴에 따라 0.2C rate에서의 방전용량에 대한 2C rate에서의 방전용량의 비율을 $76\%$에서 $93\%$$17\%$개선할 수 있었다.

알루미늄 실리콘 나노분말을 이용한 리튬이온전지 음극재료에 관한 연구 (The Research on Aluminum and Silcon Nanoparticles as Anode Materials for Lithium Ion Batteries)

  • 김형조;;김형진;박원조
    • 동력기계공학회지
    • /
    • 제17권1호
    • /
    • pp.110-115
    • /
    • 2013
  • The electrochemical performance and microstructure of Al-Si, Al-Si/C was investigated as anode for lithium ion battery. The Al-Si nano composite with 5 : 1 at% ratio was prepared by arc-discharge nano powder process. However, some of problem is occurred, when Al nano composite was synthesized by this manufacturing. The oxidation film is generated around Al-Si particles for passivating processing in the manufacture. The oxidation film interrupts electrical chemistry reaction during lithium ion insertion/extraction for charge and discharge. Because of the existence the oxidation film, Al-Si first cycle capacity is very lower than other examples. Therefore, carbon synthsized by glucose ($C_6H_{12}O_6$) was conducted to remove the oxidation film covered on the composite. The results showed that the first discharge cycle capacity of Al-Si/C is improved to 113mAh/g comparing with Al-Si (18.6mAh/g). Furthermore, XRD data and TEM images indicate that $Al_4C_3$ crystalline exist in Al-Si/C composite. In addition the Si-Al anode material, in which silicon is more contained was tested by same method as above, it was investigated to check the anode capacity and morphology properties in accordance with changing content of silicon, Si-Al anode has much higher initial discharge capacity(about 500mAh/g) than anode materials based on Aluminum as well as the morphology properties is also very different with the anode based Aluminum.

반응소결 SiC/Graphite 복합체에서 Graphite 입자의 크기에 따른 마찰마모특성 (Tribological Properties of Reaction-Bonded SiC/Graphite Composite According to Particle Size of Graphite)

  • 백용혁;서영현;최웅;이종호
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.854-860
    • /
    • 1997
  • The tribological property of ceramics is very important for use in seal rings, pump parts, thread guides and mechanical seal, etc. In the present study, which RBSC/graphite composites were manufactured by adding graphite powders with different particle sizes to mixtures of SiC powder, metallic silicon, carbon black and alumina, effects on the tribological property of each RBSC/graphite composite was investigated in accordance with the particle size of the added graphite powder. The water absorption, the bending strength and the resistance for the friction and wear were measured, and the crystalline phase and the microstructure were respectively examined by using XRD and SEM. In case that the particle size of the graphite powder was fine(2${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was accelerated, thereby making the increase of the bending strength and the decrease of the water absorption, but no improvement for the tribological properties. Furthermore, in case that the particle size of the graphite powder was some large(88~149${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was not accelerated, to thereby make the decrease of the bending strength and the increase of the water absorption, but the improvement for the tribological property of only the composite having the graphite powder of 20 vol%. In addition, in case that the particle size distribution of the graphite powder was large (under 53 ${\mu}{\textrm}{m}$), there was no improvement for every properties. However, the composites, which the graphite powder with the particle size of 53~88 ${\mu}{\textrm}{m}$ was added in 10~15 vol%, had the most increased resistance for the friction and wear which show the worn out amount of 0.4~0.6$\times$10-3 $\textrm{cm}^2$, and the value of the bending strength is 380~520 kg/$\textrm{cm}^2$.

  • PDF

졸-겔 코팅에 의한 저온형 고체산화물 연료저지용 전해질막의 합성 및 특성 (Synthesis of Electrolyte Films for Low-Temperature Solid Oxide Fuel Cells by Sol-Gel Coating and Their Characteristics)

  • 현상훈;김승구;장운석
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.391-402
    • /
    • 1999
  • Characteristics of composite electrolytes which were prepared by coating a thin film of YSZ (yttria sta-bilized zirconia : (ZrO2)0.92 (Y2O3)0.08) on YDC (yttria doped ceria : Ce0.8Y0.2O1.9) with mixed conductivity have been investigated in order to develop the low-temperature solid oxide fuel cell. The thickness (t) of spin-coated YSZ thin films after the heat-treatment at 600$^{\circ}C$ was increased proportionally to the sol con-centrations (C) while the decrease in its thickness with the spin rate ($\omega$) could be expressed in the e-quation of ln t=9.49-0.53 ln $\omega$(0.99mol//s sol conc.) When the sol concentration and the spin rate being less than 0.99 mol/l and higher than 1000 rpm respectively reliable YSZ/YDC composite electrolytes could be obtained by multi-coating although several micro-cracks were observed in singly coated YSZ film surfaces. The dense YSZ film with a 1$\mu\textrm{m}$ thickness was prepared by coating of 0.99 mol/l YSZ sol five-times at 2000 rpm followed by heat-treatment at 1400$^{\circ}C$ for 2h, The adhesion between YSZ film and YDC substrate was found to be very good. The open circuit voltages of H2/O2 single cell with YSZ/YDC composite electrolytes were 0.79∼0.82 V at 800$^{\circ}C$ and 0.75∼0.77V at 900$^{\circ}C$ The open circuit voltage was inversely proportioned to the thickness ratio of YSZ thin film (1$\mu\textrm{m}$) to YDC substrate(0.28-2.22 mm)

  • PDF

SHS법에 의한 $\textrm{Al}_2\textrm{O}_3$-SiC 복합분말 제조 및 소결특성 (Characteristics of $\textrm{Al}_2\textrm{O}_3$-SiC Composite Powder Prepared by SHS Process and its Sintering Behavior)

  • 안창영;윤기석;정중채;원창완
    • 한국재료학회지
    • /
    • 제9권8호
    • /
    • pp.817-824
    • /
    • 1999
  • $Al_2$$O_3$-SiC 화합물 분말이 $SiO_2$, A1 그리고 C 분말들을 원료분말로 하여 SHS(self-propagating High-temperature Synthesis)법에 의해 제조되었다. 원료 분말에서의 몰비, 성형압력, 반응물의 초기온도의 영향이 생성물과 연소과정에 대해 연구되었다. $SiO_2$/A1/C계의 자전연소합성은 낮은 연소온도 때문에 $400^{\circ}C$ 이상으로 예열되어야 한다. 연소반응의 결과로서 최종생성물의 순도는 반응물의 순도보다 높았다. 이 계에서 $SiO_2$:Al:C의 적당한 몰비는 3.0:4.0:6.0이었고, free carbon은 30min 동안 $650^{\circ}C$에서 배소함으로써 제거되었다. 본 연구에서 상압소결은 $1700^{\circ}C$에서 powder bed를 사용한 표본의 분해를 제어하고 치밀한 소결체를 얻는데 매우 효과적이었다. hot-pressing으로 생성된 소결체는 이론비교밀도의 약 98%이었다.

  • PDF

초음파 트랜스듀서용 PZT-고분자 3-3형 복합압전체의 유전 및 압전특성 (Dielectric and piezoelectric properties of PZT-polymer 3-3 type composite for ultrasonic transducer applications)

  • 박정학;이수호;최헌일;사공건;배진호
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권2호
    • /
    • pp.146-151
    • /
    • 1996
  • PZT powders were prepared by the molten salt synthesis method. The porous PZT ceramics were made from a mixture of PZT and polyvinylalcohol(PVA) by BURPS(Bumout Plastic Sphere) technique. The 3-3 type composites were fabricated by impregnating an sintered porous PZT ceramics with various polymer matrices. The relative permittivity of 3-3 type composite specimens was shown 860-1,100 smaller than that of solid PZT ceramics(2,100), and the dissipation factors of composite specimens were about 0.02 to 0.03. The piezoelectric coefficient d$_{33}$ of composite specimens(285-328*10$^{12}$ C/N) was comparable with that of single phase PZT specimens(364*10$^{-12}$ C/N). The thickness mode coupling factor k$_{t}$(O.5-0.6) of composite specimens was comparable with that of single phase PZT specimens(k$_{t}$-0.7), and the mechanical quality factor of composite specimens was smaller than 10, and thus these 3-3 type composite specimens would be believed as a good candidates for broad band transducer applications.ons.

  • PDF

삽입되어진 광섬유 센서를 이용한 일방향 적층 복합재료의 열적 거동 연구 (Study on Thermal Behavior of Unidirectional Composite Materials using Embedded Optical Fiber Sensors)

  • 김승택;전흥재;최흥섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.251-257
    • /
    • 1999
  • Smart structure that contains sensors, which are either embedded in a composite material or attached to a structure, is currently receiving considerable attention. Fiber Bragg grating sensor, one of the optical fiber sensors, has been widely used to sense strain and temperature for smart structures since both parameters change the resonant frequency of the grating. In this paper, according to the various heating and cooling conditions the thermal behavior of unidirectional composite material was monitored by embedding the fiber Bragg grating sensors in the longitudinal and transverse directions of unidirectional composites. The thermal behavior of unidirectional composite material was monitored for various heating and cooling rates and applied pressure. It was found that the thermal behavior was unaffected by pressure variations and heating and cooling rates applied to the composites. The thermal strains were measured by considering the shift in Bragg wavelength that was generated by the thermal expansion of composite specimen. The longitudinal and transverse C.T.E.'s were also obtained from the corresponding temperature-thermal strain curves.

  • PDF