• 제목/요약/키워드: c/c composite

검색결과 3,904건 처리시간 0.034초

Preparation and Characterization of Porous and Composite Nanoparticulate Films of CdS at the Air/Water Interface

  • Ji, Guanglei;Chen, Kuang-Cai;Yang, Yan-Gang;Xin, Guoqing;Lee, Yong-Ill;Liu, Hong-Guo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2547-2552
    • /
    • 2010
  • CdS nano-particulate films were prepared at the air/water interface under Langmuir monolayers of arachidic acid (AA) via interfacial reaction between $Cd^{2+}$ ions in the subphase and $H_2S$ molecules in the gaseous phase. The films were made up of fine CdS nanoparticles with hexagonal Wurtzite crystal structure after reaction. It was revealed that the formation of CdS nano-particulate films depends largely on the experimental conditions. When the films were ripened at room temperature or an increased temperature ($60^{\circ}C$) for one day, numerous holes were appeared due to the dissolution of smaller nanoparticles and the growth of bigger nanoparticles with an improved crystallinity. When the films were ripened further, CdS rodlike nanoparticles with cubic zinc blende crystal structure appeared due to the re-nucleation and growth of CdS nanoparticles at the stacking faults and defect structures of the hexagonal CdS grains. These structures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray diffraction (XRD). These results declare that CdS semiconductor nanoparticles formed at the air/water interface change their morphologies and crystal structures during the ripening process due to dissolution and recrystallization of the particles.

MnCo2S4/CoS2 Electrode for Ultrahigh Areal Capacitance

  • Pujari, Rahul B.;Lokhande, C.D.;Lee, Dong-Weon
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.215-219
    • /
    • 2020
  • MnCo2S4/CoS2 electrode with highly accessible electroactive sites is prepared using the hydrothermal method. The electrode exhibits an areal capacitance of 0.75 Fcm-2 at 6 mAcm-2 in 1 M KOH. The capacitance is further increased to 2.06 Fcm-2 by adding K3Fe(CN)6 and K4Fe(CN)6 (a redox couple) to KOH. This increment is associated with the redox-active properties of cobalt and manganese transition metals, as well as the ion pair of [Fe(CN)6]-3/[Fe(CN)6]-4. The capacitance retention of the MnCo2S4/CoS2 electrode is 87.5% for successive 4000 charge-discharge cycles at 10 mAcm-2 in a composite electrolyte system of KOH and ferri/ferrocyanide. The capacitance enhancement is supported by the lowest equivalent series resistance (0.62 Ωcm-2) of MnCo2S4/CoS2 in the presence of redox additive couple compared with the bare KOH electrolyte.

Minimizing the Water Leaching of Zincborate Glass by La2O3 Addition for LTCC Applications

  • Hong, Seung-Hyuk;Jung, Eun-Hee;Oh, Chang-Yong;Kim, Shin;Shin, Hyun-Ho
    • 한국세라믹학회지
    • /
    • 제45권3호
    • /
    • pp.157-160
    • /
    • 2008
  • A series of $La_2O_3$-added zincborosilicate glasses was fabricated by systematically varying $La_2O_3$ addition up to 15mol% under the constraint of a ZnO:$B_2O_3$ ratio of 1:2. The degree of water leaching after ball milling of the prepared glasses in water medium was relatively quantified by the change in zinc peak intensity in energy dispersive spectroscopy. 8mol% of $La_2O_3$ was the most efficient addition in inhibiting the glass leaching by water. The role of $La_2O_3$ in inhibiting the leaching was explained in terms of change of structural units in the glass network. When the optimum 8mol% $La_2O_3$-added ZnO-$B_2O_3$ glass was used as sintering aid for $Al_2O_3$, the fabricated alumina-glass composite at $875^{\circ}C$ demonstrated dielectric constant of 6.11 and quality factor of 15470 GHz, indicating the potential of leaching-minimized $La_2O_3-ZnO-B_2O_3$ glass for application to low temperature co-firing ceramic technology.

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.

알칼리계 무연 압전 세라믹과 에폭시 복합소재의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of Alkaline Lead-free Piezoceramic-epoxy Composites)

  • 윤창호;러득탕;허대준;안경관;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제25권6호
    • /
    • pp.420-425
    • /
    • 2012
  • Lead-free piezoelectric ceramic/epoxy composites with '0-3' connectivity were prepared by cold-pressing with a temperature controlled curing method. A ceramic powder with a composition of $(Na_{0.51}K_{0.47}Li_{0.02})(Nb_{0.8}Ta_{0.2})O_3$ was synthesized by a conventional solid state reaction route. The dielectric and piezoelectric properties of ceramic/epoxy composites were characterized as a function of the volume fraction (${\phi}$) of piezoelectric ceramics, which was varied from 70 to 95 vol%. The results indicated that the piezoelectric properties of composites were significantly affected by the volume fraction of ceramics. In terms of the piezoelectric properties, specimens showed the best performance at ${\phi}$= 85 vol%, resulting in the piezoelectric constant $d_{33}$ of 39 pC/N and the figure of merit as a piezoelectric energy harvester ($d_{33}{\cdot}g_{33}$) of 1.24 $pm^2/N$.

도재전장관용 Coping과 수종 Core간의 시멘트 결합력에 관한 비교 연구 (COMPARATIVE STUDY ON THE BOND STRENGTH OF CEMENTS BETWEEN PFM COPING AND VARIOUS CORES)

  • 백성기;장완식
    • 대한치과보철학회지
    • /
    • 제20권1호
    • /
    • pp.25-32
    • /
    • 1982
  • An in vitro study was conducted to compare the bond strength of cements between Verabond coping and various cores. Fifty-four idential cores simulating maxillary central incisor prepared for PFM crowns were made. Eighteen samples were made with 20K cast gold, eighteen with Verabond, and eighteen with Adaptic. Samples were randomly divided into three groups, each consisting of six 20K cast gold, six verabond, and six Adaptic samples. The first group was cemented with zinc phosphate cement, the second group with poly-carboxylate cement, and the third group with glass ionomer cement. Constant finger pressure was applied for cementation. The sample were then stored at $37^{\circ}C$ in distilled water bath for 24 hours. The tensile strength test was performed on an Instron Universal test machine with crosshead speed of 0.05cm/min and the results compared statistically. Results of the study showed that: 1. A significant difference of bond strength was observed with different types of dental cements and core materials. 2. With gold core, zinc phosphate cement was stronger than both the polycarboxylate cement and glass ionomer cement, which did not differ in bond strength. 3. With base-metal core, zinc phosphate cement showed the highest bond strength and was followed by polycarboxylate cement and glass ionomer cement. 4. With composite resin core, zinc phosphate cement showed the highest bond strength and was followed by glass ionomer cement and polycarboxylate cement. 5. The base-metal core (Verabond core) privided the highest retention of all core materials.

  • PDF

건축용 외장재와 접착제 연소가스의 독성분석에 관한 연구 (A Study on the Toxicity Analysis of Combustion Gases of Architectural Surface Materials and Architectural Adhesives)

  • 김원종;박영주;이해평;임석환;김정인
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.48-52
    • /
    • 2013
  • This study was carried out, using toxicity test apparatus, to analyze toxic gases of heat insulation material and adhesives of composite panels used for the architectural surface material when a fire occurs. The findings of this study show that CO, $CO_2$, HCOH, $CH_2CHCN$ and $NO_x$ were detected from styrofoam, reinforced styrofoam, polyurethane foam and glass fiber, but in the case of the polyurethane foam, HCl and HCN were detected as well. All the architectural adhesives released CO, $CO_2$ and $NO_x$, but HCHO was only detected from the adhesives for styrofoam, wood, tile, windows and doors; $CH_2CHCN$ was only from those for wood and stone; $C_6H_5OH$ was only from those for wood. The toxicity index was also measured for architectural surface material and adhesives. Polyurethane foam showed the highest index, 11.7, and glass fiber was followed as 6.8. Reinforced styrofoam showed 5.7 and styrofoam revealed the least 4.9. In the case of architectural adhesives, the highest ranking was those for stone 7.4, windows and doors 6.1, wood 5.3, tile 3.8, and styrofoam 3.7 were followed, respectively.

Investigation of earthquake angle effect on the seismic performance of steel bridges

  • Altunisik, Ahmet C.;Kalkan, Ebru
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.855-874
    • /
    • 2016
  • In this paper, it is aimed to evaluate the earthquake angle influence on the seismic performance of steel highway bridges. Upper-deck steel highway bridge, which has arch type load bearing system with a total length of 216 m, has been selected as an application and analyzed using finite element methods. The bridge is subjected to 1992 Erzincan earthquake ground motion components in nineteen directions whose values range between 0 to 90 degrees, with an increment of 5 degrees. The seismic weight is calculated using full dead load plus 30% of live load. The variation of maximum displacements in each directions and internal forces such as axial forces, shear forces and bending moments for bridge arch and deck are attained to determine the earthquake angle influence on the seismic performance. The results show that angle of seismic input motion considerably influences the response of the bridge. It is seen that maximum arch displacements are obtained at X, Y and Z direction for $0^{\circ}$, $65^{\circ}$ and $5^{\circ}$, respectively. The results are changed considerably with the different earthquake angle. The maximum differences are calculated as 57.06%, 114.4% and 55.71% for X, Y and Z directions, respectively. The maximum axial forces, shear forces and bending moments are obtained for bridge arch at $90^{\circ}$, $5^{\circ}$ and $0^{\circ}$, respectively. The maximum differences are calculated as 49.12%, 37.37% and 51.50%, respectively. The maximum shear forces and bending moments are obtained for bridge deck at $0^{\circ}$. The maximum differences are calculated as 49.67%, and 49.15%, respectively. It is seen from the study that the variation of earthquake angle effect the structural performance of highway bridges considerably. But, there is not any specific earthquake angle of incidence for each structures or members which increases the value of internal forces of all structural members together. Each member gets its maximum value of in a specific angle of incidence.

Assessment of statistical sampling methods and approximation models applied to aeroacoustic and vibroacoustic problems

  • Biedermann, Till M.;Reich, Marius;Kameier, Frank;Adam, Mario;Paschereit, C.O.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.529-550
    • /
    • 2019
  • The effect of multiple process parameters on a set of continuous response variables is, especially in experimental designs, difficult and intricate to determine. Due to the complexity in aeroacoustic and vibroacoustic studies, the often-performed simple one-factor-at-a-time method turns out to be the least effective approach. In contrast, the statistical Design of Experiments is a technique used with the objective to maximize the obtained information while keeping the experimental effort at a minimum. The presented work aims at giving insights on Design of Experiments applied to aeroacoustic and vibroacoustic problems while comparing different experimental designs and approximation models. For this purpose, an experimental rig of a ducted low-pressure fan is developed that allows gathering data of both, aerodynamic and aeroacoustic nature while analysing three independent process parameters. The experimental designs used to sample the design space are a Central Composite design and a Box-Behnken design, both used to model a response surface regression, and Latin Hypercube sampling to model an Artificial Neural network. The results indicate that Latin Hypercube sampling extracts information that is more diverse and, in combination with an Artificial Neural network, outperforms the quadratic response surface regressions. It is shown that the Latin Hypercube sampling, initially developed for computer-aided experiments, can also be used as an experimental design. To further increase the benefit of the presented approach, spectral information of every experimental test point is extracted and Artificial Neural networks are chosen for modelling the spectral information since they show to be the most universal approximators.

계면상 조건과 단섬유 함유량이 강화고무의 피로특성에 미치는 영향 (Effects of Interphase Condition and Short-fiber Content on the Fatigue Properties of Reinforced Rubber)

  • 류상렬;이동주
    • Composites Research
    • /
    • 제13권5호
    • /
    • pp.10-17
    • /
    • 2000
  • 계면상 조건과 단섬유 함유량 증가에 따른 강화고무의 피로특성에 대해 실험적 고찰을 하였다. 피로시험 후 기지고무의 스프링 상수는 약 21% 감소하였고, 강화고무는 반대로 증가하였다. 강화고무의 스프링 상수 변화율은 섬유함유량 증가에 따라 감소하였고, 계면상 조건이 우수할수록 변화율이 적었다. 피로시험 후 기지고무의 온도는 2.5배, 강화고무는 1.7∼2.0배 증가하였다. 강화고무의 온도 변화율은 섬유 함유량 증가에 따라 감소하였고, 동일한 섬유 함유량에서 계면상 조건이 우수할수록 변화율이 적었다. 이번 연구에서 접착제 402와 고무용액을 2번씩 도포한 경우가 가장 우수한 계면상 모델(C)이 되었다. 그리고 이러한 강화고무를 자동차의 Engine Mount Rubber, Bush 그리고 Stopper등의 적용을 검토하였다.

  • PDF