• Title/Summary/Keyword: butt welded joint

Search Result 103, Processing Time 0.029 seconds

Experimental Behaviors of Weld Zone Property of the Butt and the Lap Jointed Specimen Friction-Stir-Welded with 2mmt 1050 Aluminum Alloy Sheet (마찰교반용접된 겹치기 및 맞대기 용접부 특성에 대한 실험)

  • Jeon Jeong-il;Jang Seok-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.187-193
    • /
    • 2006
  • The butt and the lap welding by friction stir welding performs with $2mm^t$ 1050 aluminum alloy sheet. This paper shows behaviors of property such as vickers hardness, yielding and ultimate stresses, and macro structures for weld zone cross section of the butt and the lap jointed specimens. It is also carried out making comparison with maximum loads, stress-strain diagrams, and deformation after the guided bending test and fracture behaviors between the butt and the lap jointed specimens. It is found that the weldability of the butt jointed specimen is better than that of the lap jointed specimen.

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (II) - Mechanical Properties of laser-welded AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (II) - AZ31B-H24 및 AZ31B-O 레이저 용접부의 기계적 특성 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Magnesium alloy sheet which is commercially available in the market presently is AZ31B, a Mg-Al-Zn three elements alloy. AZ31B is used by being classified into AZ31B-H24 and AZ31B-O depending on temper designation. In this study, AZ31B-H24 and AZ31B-O alloy sheets with 1.25mm thickness were butt-welded using CW Nd:YAG laser. And the effect of materials on mechanical properties was investigated by tensile and hardness tests. As a result of this study, regardless of materials, the butt-welded joint did not show a significant difference in tensile strength and hardness values. However, compared with the basemetal, the AZ31B-O showed more outstanding mechanical properties than AZ31B-H24, and that is because H24 material lost the effect of work hardening during welding.

Fatigue Strength of Tensile Specimen with Butt Welded Joints (인장시험체 맞대기 용접부의 피로강도)

  • Jo, Jae-Byung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.1-6
    • /
    • 2004
  • Fatigue tests were carried out for butt welded joints with SM520-TMC steel plate with thickness between 20mm and 80mm. The test results were analysed statistically and the effect of plate thickness on the fatigue strength investigated. The fatigue strengths based on nominal stress range satisfy the requirement of the standards. Due to misalignment of the specimens, the measured stresses are higher than the nominal stresses especially for 20mm thick plates. If fatigue strengths are evaluated based on the measured stresses, then the fatigue strengths are greater than those based on nominal stresses. The results show that the thickness effect is similar to the formula proposed by Gurney.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee Zhang-Kyu;Yoon Joung-Hwi;Woo Chang-Ki;Park Sung-Oan;Kim Bong-Gag;Jo Dae-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.342-348
    • /
    • 2005
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform (WFT or SIFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform (WT) is used to decompose the acoustic emission (AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

  • PDF

The Effect of Welding Residual Stress on Whole Structure with T-Joint RHS

  • Rajesh S. R.;Bang H. S.;Kim H.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • In the field of welding the mechanical behavior of a welded structure under consideration may be predicted via heat transfer and welding residual stress analysis. Usually such numerical analyses are limited to small regular mesh models or test specimens. Nevertheless, there is very few strength assessment of the whole structure that includes the effect of welded residual stress. The present work is based on the specialized finite element codes for the calculation of nonlinear heat transfer details and residual stress including the external load on the welded RHS (Rectangular Hollow Section) T-joint connections of the whole structure. First the thermal history of the combined fillet and butt-welded T-joint equal width cold-formed RHS are calculated using nonlinear finite element analysis (FEA) considering the quarter model of the joint. Then using this thermal history the residual stress around the joints has been evaluated. To validity the FEA result, the calculated residual stresses were compared with the available experimental results. The residual stress obtained from the quarter model is mapped to the full model and then to the whole structure model using FEM codes. The results from the FEM codes were exported to the commercial package for visualization and further analysis applying loads and boundary conditions on the whole structure. The residual stress redistribution along with the external applied load is examined computationally.

  • PDF

The strain measurement on the aluminum alloy welded transition joint (알루미늄 合金 異材熔接部의 變形率測定)

  • 옹장우;전제춘;오상진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.625-634
    • /
    • 1986
  • The strain distribution on a welded aluminum alloy transition joint produced by a static tensile load has been measured using a moire method combined with photoelastic coating method. The test specimens were made of aluminum alloy 6061-T6 and 2014-T6 butt welded with ER-4043 filler metal, and were post welded heat treated (solid solution heat treatment 502.deg. C 70min.) and precipitated (artificial aging 171.deg. C 600min.) to cause an abrupt change of mechanical properties between the base metals and weld metal. The photoelastic epoxy rubber was cemented on the specimen grating which had been reproduced on the specimen surface by using an electropolishing. The measurements were compared with strains computed by Finite Element Analysis. The following results were abtained. (1) The maximum strain were distributed along the center line in the transverse directiion of the weld metal. (2) The strain gradient along the fusion line increased approaching the V-groove tip and the maximum value was observed at a quarter of width from the V-groove tip. (3) The moire method combined with photoelastic coating was proved very useful for real time strain measurement in the welded aluminum alloy transition joint.

Fatigue Strength For The Butt Welded Joint Of High Strength Steel (고강도강(高强度鋼) 맞대기 용접연결부(鎔接連結部)의 피로강도(疲勞强度))

  • Kim, Sung Hoon;Bae, Doo Byong;Kim, Myeong Kwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.385-394
    • /
    • 2002
  • Currently, high strength steel is not used for steel bridges in Korea, except for the SM570 high strength steel in very isolated cases. The study aimed to promote the active adaptation of high strength steel for long-span steel bridges. Thus, the fatigue behavior of SM570 and POSTEN80 high strength steel was investigated. For the experimental study, the butt welded joints samples were manufactured. Likewise, regular amplitude tensile fatigue tests were conducted. Test results, e.g., location of fatigue cracks and their propagation were compared with the findings of other researchers. After analyzing the effects of fatigue strength, e.g., static tensile strength and plate thickness of base metal, basic data for fatigue design criteria of SM570 and POSTEN80 high strength steel were presented.

Microstructure and Tensile Properties of SS400 Carbon Steel and SUS430 Stainless Steel Butt Joint by Gas Metal Arc Welding

  • Poonnayom, Pramote;Chantasri, Sakchai;Kaewwichit, Jesada;Roybang, Waraporn;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The application of SS400 carbon steel and AISI430 ferritic stainless steel joint has been increased in industries because of the advantage of both metals was able to increase the service lifetime of the important structures. Therefore, a fusion welding process that could produce a sound weld and good joint properties should be optimized. This research is aimed to weld a butt joint of SS400 carbon steel and AISI430 ferritic stainless steel using Gas Metal Arc Welding (GMAW) welding process and to study the effects of welding parameters on joint properties. The experimental results were concluded as follows. The optimized welding parameter that produced the tensile strength of 448 MPa was the welding current of 110A, the welding speed of 400 mm/min and the mixed gas of $80%Ar+20%CO_2$. Increase of the welding current affected to increase and decrease the tensile strength of the joint, respectively. Lower welding current produced the incomplete bonding of the metals and indicated the low tensile strength. Microstructure investigation of the welded joint showed a columnar grain in the weld metal and a coarse grain in the heat affected zone (HAZ). The unknown hard precipitated phases were also found at the grain boundaries of the weld metal and HAZ. The hardness profile did not show the difference of the hardness on the joint that was welded by various welding currents but the hardness of the weld metal was higher than that of the other location.

Influence of Welding Shapes and Welding Procedures on Fatigue Strength of Small Diameter Branch Welded Pipe Joint (소구경 분기배관 용접부의 피로강도에 미치는 용접부 형상 및 용접공정의 영향)

  • Baek, Jong-Hyun;Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1092-1097
    • /
    • 2003
  • S-N fatigue tests were conducted to investigate the fatigue strength of small diameter socket and butt welded joints made of carbon steels. Experimental parameters were pipe diameter, throat depth, shape of socket welds and welding procedure. Filler metals used in SMAW and GTAW procedure were E9016-G with diameter of 4.0 mm and ER70S-G with diameter of 2.4 mm. API 5L Gr.B pipes were adopted as a small diameter branch pipes. All socket fittings were machined from ASTM A105 carbon steel. Tensile strength was not affected by the welding procedure. Fatigue strength in socket weld joints increased with increasing pipe diameter, area of weld metal and weld leg length of pipe side.

  • PDF