• Title/Summary/Keyword: butadiene rubber

Search Result 279, Processing Time 0.023 seconds

Preparation and Physical Properties of Acrylonitrile-Butadiene Rubber Nanocomposites Filled with Zinc Dimethacrylate (디메틸아크릴산 아연을 이용한 아크릴로나이트릴-부타디엔 고무 나노복합체의 제조 및 물성)

  • 진원섭;이해성;나창운
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • Elastomeric nanocomposites were prepared by employing zinc dimethacrylate into an acrylonitrile-butadiene rubber, and their network structures, mechanical properties, and fracture morphologies were investigated according to the adding methods and contents of zinc dimethacrylate. The total crosslink density increased with increasing the zinc dimethacrylate level, due to increased ionic bonds. Both the tensile strength and tear strength increased with increasing zinc dimethacrylate loadings, and then decreased after reaching a maximum value. It was found that the tear strength and crack resistance were greatly affected by the mixing method of zinc dimethacrylate. The in-situ nanocomposites, where zinc dimethacrylate particles were formed by the reaction of zinc oxide and methacrylic acid, showed much improved tear strength and crack resistance compared to those of the nanocomposites based on the direct mixing of zinc dimetacrylate powders. This was because of the finer zinc dimethacrylate particles and improved dispersion of the in-situ nanocomposites.

A Study on Mechanical Properties of Acrylonitrile Butadiene Rubber Composites

  • Jung, Eugene;Pyo, Kyeong-Deok;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.280-286
    • /
    • 2017
  • The mechanical and dynamic properties according to the content of filler, plasticizer, and crosslinking agent of rubber composites for Lipseal were measured in this study. The mechanical properties of the composite including the silane coupling agent and silica were found to be superior to those of the composite containing carbon black. It was found that the rebound resilience characteristics were influenced by the crosslink density of sulfur rather than the filler or plasticizer. In the case of recovery, it was confirmed that the elastic restoring force improved in the compression deformation condition and recovery increased as the crosslinking density increased. The rubber composite for Lipseal of this study is expected to improve the manufacturing technology of the rubber composite which can implement the optimum function for recognizing the performance such as oil resistance, durability and compression set.

Studies on the Inflammability and Heat Resistance of Conveyer Rubber Belts (콘베어 고무벨트의 난연성(難燃性) 및 내열성(耐熱性)에 관(關)한 연구(硏究))

  • Oh, Pyoung-Je
    • Elastomers and Composites
    • /
    • v.16 no.4
    • /
    • pp.211-216
    • /
    • 1981
  • A series of conveyer rubber belts has been made by blending natural rubber(NR), styrene butadiene rubber(SBR), chloroprene rubber(CR) and additives on nylon cords, and their respective flammability has been investigated. It has been observed that: 1. By adding an antiflame agent to the belt, in addition to 70% chlorinated paraffine and antimony oxide($Sb_{2}O_{3}$), the inflammability is improved remarkably to O - 2 seconds due to the synergistic effect, while a sample without antiflame B fails to pass the KS M 6678 test. 2. Physical properties, such as tensile strength, elongation at break and adhesion strength, of the sample belts have been studies by varying ratios of NR/CR from 20 to 100, and it has been observed that the higher ratios have the better physical properties.

  • PDF

Average Particle Size Prediction of Rubber Dispersed Phase in High Impact Polystyrene (내충격성 폴리스티렌의 고무상 입자경 예측)

  • Lee, Seong-Jae;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.31 no.5
    • /
    • pp.327-334
    • /
    • 1996
  • A correlative analysis has been carried out to predict the average particle size of rubber dispersed phase In high impact polystyrene manufactured by bulk polymerization. To do the correlation, a mechanistic model suggested previously by the author was used for describing the size of stabilizing particles agitated under the turbulent viscous shear subranges in a prepolymerization reactor, where the rubber particles were assumed to be formed at the time of phase inversion in the reactor. Viscosities required for the model were postulated to describe the overall behavior of butadiene rubber and polystyrene mixture along the wide range of conversion. The good agreement between the model and the experimental data from a plant was quite satisfactory for the prediction of the average rubber particle size of high impact polystyrene.

  • PDF

Study on Cold/Oil Atmosphere Resistance Property of Face Seal Rubber for Track Layer

  • Shin, Jae Won
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • A face seal comprising a metal ring and acrylonitrile butadiene rubber (NBR) was installed in the driving part and suspension unit. The seal serves as a bearing and simultaneously prevents entry of foreign matter from external environment as well as internal oil leakage. Subsequently, the rubber-rod ring generates axial pressure owing to rubber elasticity (hardness), performs static sealing function between housing details and outer diameter of seal, and transmits rotational torque to the rotating support ring. In order to improve the durability of NBR, which performs the above tasks, and to effectively use it in tracked-vehicle applications at extreme temperatures, this study reports a mixing design approach to enhance cold and oil resistances of NBR.

SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo;Lee, Dong-Hyun;Kim, Il-Jin;Son, Min-Jin;Kim, Won-Ho;Cho, Seong-Gyu
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.776-784
    • /
    • 2009
  • N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

Filler-Elastomer Interactions. 6. Influence of Oxygen Plasma Treatment on Surface Properties of Carbon Blacks (충전재-탄성체 상호작용. 6. 산소 플라즈마 처리가 카본블랙표면특성 미치는 영향)

  • Cho, Ki-Sook;Zoborski, M.;Slusarski, L.;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.99-106
    • /
    • 2002
  • In this work, the surface properties and mechanical interfacial properties of the carbon blacks treated by oxygen plasma were investigated. The surface properties of carbon black by oxidation process of oxygen plasma were studied in acid-base surface value, zeta potential, and X-ray photoelectron spectroscopy (XPS). And their mechanical interfacial properties of the carbon black/rubber composites were evaluated by the composite tearing energy ($G_{III}c$). As a result, it was found that the introduction rate of oxygen-containing polar functional groups, such as carboxyl, hydroxyl, lactone, and carbonyl groups, onto the carbon black surfaces was increased by increasing the plasma treatment time. It revealed that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the carbon black surfaces, resulting in improving the tearing energy ($G_{III}c$) of the carbon black/acrlyonitrile butadiene rubber composites.

Filler-Elastomer Interactions. 11. Influence of Atmospheric Pressure Plasma on Surface Properties of Nanoscaled Silicas (충전재-탄성체 상호작용. 11. 상압플라즈마 처리가 나노구조의 실리카 표면특성에 미치는 영향)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • In this work, the effect of oxygen plasma treatment of nano-scaled silica on the mechanical interfacial properties and thermal stabilities of the silica/rubber composites was investigated. The surface properties of the silica were studied in X-ray photoelectron spectroscopy (XPS) and contact angles. And, their mechanical interfacial properties and thermal stabilities of the composites were characterized by tearing energy ($G_{IIIC}$) and thermogravimetric analysis (TGA), respectively. As a result, it was found that the introduction rate of oxygen-containing polar functional groups onto the silica surfaces was increased by increasing the plasma treatment time, resulting in improving the tearing energy. Also, the thermal stabilities of the composites were increased by increasing the treatment time. These results could be explained that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the silica surfaces in a compounding system.

A Study on Curing Reaction of 1-Chlorobutadiene-Butadiene Copolymer by Moisture (1-Chlorobutadiene-Butadiene Copolymer의 수가교반응(水架橋反應)에 관한 연구(硏究)(II))

  • Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.305-313
    • /
    • 1987
  • In this study, as one of the developing ways of the functional elastomer, improvement of the functionality of 1-Chlorobutadiene-Butadiene Copolymer(CB-BR) was attempt through curing reaction by moisture. The curing reaction of CB-BR was determined an use of $\gamma$-Aminopropyltriethoxysilane(APS) and $\gamma$-Aminopropylmethyldiethoxysilane(ADS) as a crosslinking agent with filler at so the uncrosslinked elastomer was exposured in the air and curing reaction by moisture in the air was studied. The results obtained are as follows. 1. APS was more efficient than ADS as a crosslinking agent for CB-BR 2. Optimum amount of APS for moisture cured elastomer was r=1.5(at the ratio of $[APS]/[Cl^*]$) also in case(r=1.5), elastomer formed after soaking $T_{72}$ had similar physical properties with elastomer crosslinked by sulfur and it was very good. 3. Uncrosslinked elastomer(CB-BR+APS+Silica) was easily crosslinked by exposure to the air, and the physical properties was also satisfactory.

  • PDF

The Rolling-Sliding Friction of Rubber and the Behavior of Contact Area

  • Uchiyama, Y.;Monden, N.;Miyao, T.;Iwai, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.189-190
    • /
    • 2002
  • Rolling-sliding friction was investigated for three SBR (styrene-butadiene rubber) specimens including silica-filled, HAF carbon black-filled, and SAF carbon black-filled SBR. When a rubber wheel was rolled against a glass disk, the coefficient of friction varied with the slip ratios. The coefficient of friction for the silica-tilled SBR showed the highest value of the rubber specimens examined under various slip ratios. The contact areas of silica-filled SBR were larger than those of the carbon black-filled SBRs, as indicated the modulus of the silica-filled SBR showing the lowest value. The contact area during rolling-sliding friction was always smaller than those during the static contact. The friction force at the unit contact area for the silica-filled SBR under braking and driving was higher than those of carbon black-filled SBRs.

  • PDF