• Title/Summary/Keyword: business process management systems

Search Result 1,088, Processing Time 0.027 seconds

The Effect of Users' Personality on Emotional and Cognitive Evaluation in UCC Web Site Usage (UCC(user-created-contents) 웹 사이트에서 사용자의 인성이 감정적, 인지적 평가와 UCC 활용에 미치는 영향)

  • Moon, Yun-Ji;Kang, So-Ra;Kim, Woo-Gon
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.167-190
    • /
    • 2010
  • The research conducted here focuses on the effect of factors that affect the behavior of UCC (User Created Content) website users, other than user's rational recognition of how useful a UCC website can be. Most discussions in the existing literature on information systems have focused on users' evaluation how a UCC website can help to attain the users' own goals. However, there are other factors and this research pays attention to an individual's 'personality,' which is stable and biological in nature. Specifically, I have noted here that 'extroversion' and 'neuroticism,' the two common personality factors presented in Eysenck's most representative 'EPQ Model' and 'Big Five Model,' are the two personality factors that affect a site's 'usefulness,' by this I mean how useful does the user consider the website and its content. How useful a site is considered by the user is the other factor that has been regarded as the antecedent factor that influences the adoption of information systems in the existing MIS (Management Information System) research. Secondly, as using or creating a UCC website does not guarantee the user's or the creator's extrinsic motivation, unlike when using the information system within an organization, there is a greater likelihood that the increase in user's activities in relation to a UCC website is motivated by emotional factors rather than rational factors. Thus, I have decided to include the relationship between an individual's personality and what they find pleasurable in the research model. Thirdly, when based on the S-O-R Paradigm of Mehrabian and Russell, the two cognitive factors and emotional factors are finally affected by stimulus, and thus these factors ultimately have an effect on an individual's respondent behavior. Therefore, this research has presented an assumption that the recognition of how useful the site and content is and what emotional pleasure it provides will finally affect the behavior of the UCC website users. Finally, the relationship between the recognition of how useful a site is and how pleasurable it is to useand UCC usage may differ depending on certain situational conditions. In other words, the relationship between the three factors may vary according to how much users are involved in the creation of the website content. Creation thus emerges as the keyword of UCC. I analyzed the above relationships through the moderating variable of the user's involvement in the creation of the site. The research result shows the following: When it comes to the relationship between an individual's personality and what they find pleasurable it is extroverted users who have a greater likelihood to feel pleasure when using a UCC website, as was expected in this research. This in turn leads to a more active usage of the UCC web site because a person who is an extrovert likes to spend time on activities with other people, is sensitive to new experiences and stimuli and thus actively responds to these. An extroverted person accepts new UCC activities as part of his/her social life, rather than getting away from this new UCC environment. This is represented by the term 'Foxonomy' where the users meet a variety of users from all over the world and contact new types of content created by these users. However, neuroticism creates the opposite situation to that created by extroversion. The representative symptoms of neuroticism are instability, stress, and tension. These dispositions are more closely related to stress caused by a new environment rather than this creatingcuriosity or pleasure. Thus, neurotic persons have an uneasy feeling and will eventually avoid the situation where their own or others' daily lives are frequently exposed to the open web environment, this eventually makes them have a negative attitude towards the web environment. When it comes to an individual's personality and how useful site is, the two personality factors of extroversion and neuroticism both have a positive relationship with the recognition of how useful the site and its content is. The positive, curious, and social dispositions of extroverted persons tend to make them consider the future usefulness and possibilities of a new type of information system, or website, based on their positive attitude, which has a significant influence on the recognition of how useful these UCC sites are. Neuroticism also favorably affects how useful a UCC website can be through a different mechanism from that of extroversion. As the neurotic persons tend to feel uneasy and have much doubt about a new type of information system, they actively explore its usefulness in order to relieve their uncomfortable feelings. In other words, neurotic persons seek out how useful a site can be in order to secure their own stable feelings. Meanwhile, extroverted persons explore how useful a site can be because of their positive attitude and curiosity. As a lot of MIS research has revealed that the recognition of how useful a site can be and how pleasurable it can be to use have been proven to have a significant effect on UCC activity. However, the relationship between these factors reveals different aspects based on the user's involvement in creation. This factor of creationgauges the interest of users in the creation of UCC contents. Involvement is a variable that shows the level of an individual's mental effort in creating UCC contents. When a user is highly involved in the creation process and makes an enormous effort to create UCC content (classed a part of a high-involvement group), their own pleasure and recognition of how useful the site is have a significantly higher effect on the future usage of the UCC contents, more significantly than the users who sit back and just retrieve the UCC content created by others. The cognitive and emotional response of those in the low-involvement group is unlikely to last long,even if they recognize the contents of a UCC website is pleasurable and useful to them. However, the high-involvement group tends to participate in the creation and the usage of UCC more favorably, connecting the experience with their own goals. In this respect, this research presents an answer to the question; why so many people are participating in the usage of UCC, the representative form of the Web 2.0 that has drastically involved more and more people in the creation of UCC, even if they cannot gain any monetary or social compensation. Neither information system nor a website can succeed unless it secures a certain level of user base. Moreover, it cannot be further developed when the reasons, or problems, for people's participation are not suitably explored, even if it has a certain user base. Thus, what is significant in this research is that it has studied users' respondent behavior based on an individual's innate personality, emotion, and cognitive interaction, unlike the existing research that has focused on 'compensation' to explain users' participation with the UCC website. There are also limitations in this research. Firstly, I divided an individual's personality into extroversion and neuroticism; however, there are many other personal factors such as neuro-psychiatricism, which also needs to be analyzed for its influence on UCC activities. Secondly, as a UCC website comes in many types such as multimedia, Wikis, and podcasting, these types need to be included as a sub-category of the UCC websites and their relationship with personality, emotion, cognition, and behavior also needs to be analyzed.

A Study on Relationship of Salesperson's, Relationship Beliefs, Negative Emotion Regulation Strategies, and Prosocial Behavior to Customer (판매원의 관계신념, 부정적 감정 조절전략, 그리고 친소비자행동의 관계에 관한 연구)

  • Kim, Sang-Hee
    • Management & Information Systems Review
    • /
    • v.34 no.5
    • /
    • pp.191-212
    • /
    • 2015
  • Unlike the existing researches related to salespersons, this study intends to place the focus on salespersons' psychological characteristic as an element affecting their selling behavior. This is because employees' psychological characteristic is very likely to affect their devotion and commitment to relationship with customers and long-term production by a company. In particular, salespersons are likely to get a feeling of fatigue or loss, or make a cynical or cold response to customers because of frequent interaction with them, and to show emotional indifference in an attempt to keep their distance from customers. But the likelihood can vary depending on salespersons' own psychological characteristic; in particular, the occurrence of these phenomena is very likely to vary significantly depending on relationship belief in interpersonal relations. In the field of psychology, under way are researches related to personal psychological characteristics to improve the quality of interpersonal relations and to maximize personal performance and enhance situational adaptability during this process; it is a personal relationship belief that is recently mentioned as such a psychological characteristic. For salespersons having frequent interaction with customers, particularly, relationship belief can be a very important element in forming relations with customers. So this study aims at determining how salespersons' relationship belief affects negative emotion regulation strategies and prosocial behavior to customer. As a result, salespersons' relationship belief was found to have effects on their negative emotion regulation strategies and prosocial behavior to customer. Negative emotion regulation strategies was found to have effects on prosocial behavior. Salespersons with intimate relationship belief try to use active regulation, support-seeking regulation and salespersons with controlling relationship belief try to use avoidant/distractive regulation. Intimate relationship belief was found to have more prosocial behavior, controlling relationship belief was found to have less prosocial behavior to customer. salespersons' negative emotion regulation strategies was found to have effects on their prosocial behavior to customer. Active, support-seeking influence prosocial behavior to customer positively, avoidant/distractive regulation influence prosocial behavior to customer negatively.

  • PDF

Value of Information Technology Outsourcing: An Empirical Analysis of Korean Industries (IT 아웃소싱의 가치에 관한 연구: 한국 산업에 대한 실증분석)

  • Han, Kun-Soo;Lee, Kang-Bae
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.115-137
    • /
    • 2010
  • Information technology (IT) outsourcing, the use of a third-party vendor to provide IT services, started in the late 1980s and early 1990s in Korea, and has increased rapidly since 2000. Recently, firms have increased their efforts to capture greater value from IT outsourcing. To date, there have been a large number of studies on IT outsourcing. Most prior studies on IT outsourcing have focused on outsourcing practices and decisions, and little attention has been paid to objectively measuring the value of IT outsourcing. In addition, studies that examined the performance of IT outsourcing have mainly relied on anecdotal evidence or practitioners' perceptions. Our study examines the contribution of IT outsourcing to economic growth in Korean industries over the 1990 to 2007 period, using a production function framework and a panel data set for 54 industries constructed from input-output tables, fixed-capital formation tables, and employment tables. Based on the framework and estimation procedures that Han, Kauffman and Nault (2010) used to examine the economic impact of IT outsourcing in U.S. industries, we evaluate the impact of IT outsourcing on output and productivity in Korean industries. Because IT outsourcing started to grow at a significantly more rapid pace in 2000, we compare the impact of IT outsourcing in pre- and post-2000 periods. Our industry-level panel data cover a large proportion of Korean economy-54 out of 58 Korean industries. This allows us greater opportunity to assess the impacts of IT outsourcing on objective performance measures, such as output and productivity. Using IT outsourcing and IT capital as our primary independent variables, we employ an extended Cobb-Douglas production function in which both variables are treated as factor inputs. We also derive and estimate a labor productivity equation to assess the impact of our IT variables on labor productivity. We use data from seven years (1990, 1993, 2000, 2003, 2005, 2006, and 2007) for which both input-output tables and fixed-capital formation tables are available. Combining the input-output tables and fixed-capital formation tables resulted in 54 industries. IT outsourcing is measured as the value of computer-related services purchased by each industry in a given year. All the variables have been converted to 2000 Korean Won using GDP deflators. To calculate labor hours, we use the average work hours for each sector provided by the OECD. To effectively control for heteroskedasticity and autocorrelation present in our dataset, we use the feasible generalized least squares (FGLS) procedures. Because the AR1 process may be industry-specific (i.e., panel-specific), we consider both common AR1 and panel-specific AR1 (PSAR1) processes in our estimations. We also include year dummies to control for year-specific effects common across industries, and sector dummies (as defined in the GDP deflator) to control for time-invariant sector-specific effects. Based on the full sample of 378 observations, we find that a 1% increase in IT outsourcing is associated with a 0.012~0.014% increase in gross output and a 1% increase in IT capital is associated with a 0.024~0.027% increase in gross output. To compare the contribution of IT outsourcing relative to that of IT capital, we examined gross marginal product (GMP). The average GMP of IT outsourcing was 6.423, which is substantially greater than that of IT capital at 2.093. This indicates that on average if an industry invests KRW 1 millon, it can increase its output by KRW 6.4 million. In terms of the contribution to labor productivity, we find that a 1% increase in IT outsourcing is associated with a 0.009~0.01% increase in labor productivity while a 1% increase in IT capital is associated with a 0.024~0.025% increase in labor productivity. Overall, our results indicate that IT outsourcing has made positive and economically meaningful contributions to output and productivity in Korean industries over the 1990 to 2007 period. The average GMP of IT outsourcing we report about Korean industries is 1.44 times greater than that in U.S. industries reported in Han et al. (2010). Further, we find that the contribution of IT outsourcing has been significantly greater in the 2000~2007 period during which the growth of IT outsourcing accelerated. Our study provides implication for policymakers and managers. First, our results suggest that Korean industries can capture further benefits by increasing investments in IT outsourcing. Second, our analyses and results provide a basis for managers to assess the impact of investments in IT outsourcing and IT capital in an objective and quantitative manner. Building on our study, future research should examine the impact of IT outsourcing at a more detailed industry level and the firm level.

Mediating Effect of Ease of Use and Customer Satisfaction in the Relationship between Mobile Shopping Mall of Service Quality and Repurchase Intention of University Student consumer (모바일쇼핑몰 서비스품질과 대학생 고객의 재구매의도 관계에서 사용용이성과 고객만족도의 매개효과)

  • Kim, Sun-A;Park, Ji-Eun;Park, Song-Choon
    • Management & Information Systems Review
    • /
    • v.38 no.1
    • /
    • pp.201-223
    • /
    • 2019
  • The purpose of this study is to verify empirically the causal relationship between service quality, ease of use, customer satisfaction, and repurchase intention of mobile shopping mall. And this study is to investigate the ease of use and customer satisfaction mediating effect of between service quality and repurchase intention. Therefore, 323 university students in Jeonnam area were surveyed and the structural equation model was derived based on previous research. Service quality of mobile shopping mall make a significant effect on using easiness, purchasing satisfaction and repurchase intention. However, among service quality of mobile shopping mall, service scape like mobile interface and site design made a positive effect on purchasing satisfaction, but did not any effect on repurchase intention. In other words, service quality factors that make positive effects on customer's pleasant using and repurchase intention make a positive effect on repurchase intention when providing and using the service customer wants faithfully rather than external part of the site and mutually influencing attitude or behavior well. The implications suggested by this study are as follows. First, service quality of mobile shopping mall makes a significant effect on repurchase intention, so it's necessary to improve CS service system so as to treat customers' inquiries or inconveniences actively during mobile shopping and return and refund of defective products quickly and conveniently. And, in addition to the finally used factors in analysis process, benefits using customers' grade by number of purchases, such as various events, coupons, reserve, etc. and active contents marketing strategies providing more various pleasures and values of shopping are necessary. Second, satisfaction of mobile shopping mall makes a positive effect on repurchase intention, so visiting of site and repurchasing of product are continuously done as customers' satisfaction on shopping mall is increasing. Therefore, shopping mall site requires differentiation of contents, exact plan and practice of service, marketing, etc. so that customers can feel more satisfaction. This study is significant as it systematically analyzed concepts of components that service quality of mobile shopping mall makes an effect on using easiness, purchasing satisfaction, and repurchase intention, verified the relations, systematized it by theoretical structure, and widened the understanding of effects making an effect on repurchase intention.

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

Quality Dimensions Affecting the Effectiveness of a Semantic-Web Search Engine (검색 효과성에 영향을 미치는 시맨틱웹 검색시스템 품질요인에 관한 연구)

  • Han, Dong-Il;Hong, Il-Yoo
    • Asia pacific journal of information systems
    • /
    • v.19 no.1
    • /
    • pp.1-31
    • /
    • 2009
  • This paper empirically examines factors that potentially influence the success of a Web-based semantic search engine. A research model has been proposed that shows the impact of quality-related factors upon the effectiveness of a semantic search engine, based on DeLone and McLean's(2003) information systems success model. An empirical study has been conducted to test hypotheses formulated around the research model, and statistical methods were applied to analyze gathered data and draw conclusions. Implications for academics and practitioners are offered based on the findings of the study. The proposed model includes three quality dimensions of a Web-based semantic search engine-namely, information quality, system quality and service quality. These three dimensions each have measures designed to collectively assess the respective dimension. The model is intended to examine the relationship between measures of these quality dimensions and measures of two dependent constructs, including individuals' net benefit and user satisfaction. Individuals' net benefit was measured by the extent to which the user's information needs were adequately met, whereas user satisfaction was measured by a combination of the perceived satisfaction with search results and the perceived satisfaction with the overall system. A total of 23 hypotheses have been formulated around the model, and a questionnaire survey has been conducted using a functional semantic search website created by KT and Hakia, so as to collect data to validate the model. Copies of a questionnaire form were handed out in person to 160 research associates and employees working in the area of designing and developing semantic search engines. Those who received the form, 148 respondents returned valid responses. The survey form asked respondents to use the given website to answer questions concerning the system. The results of the empirical study have indicated that, of the three quality dimensions, information quality was found to have the strongest association with the effectiveness of a Web-based semantic search engine. This finding is consistent with the observation in the literature that the aspects of the information quality should serve as a basis for evaluating the search outcomes from a semantic search engine. Measures under the information quality dimension that have a positive effect on informational gratification and user satisfaction were found to be recall and currency. Under the system quality dimension, response time and interactivity, were positively related to informational gratification. On the other hand, only one measure under the service quality dimension, reliability was found to have a positive relationship with user satisfaction. The results were based on the seven hypotheses that have been accepted. One may wonder why 15 out of the 23 hypotheses have been rejected and question the theoretical soundness of the model. However, the correlations between independent variables and dependent variables came out to be fairly high. This suggests that the structural equation model yielded results inconsistent with those of coefficient analysis, because the structural equation model intends to examine the relationship among independent variables as well as the relationship between independent variables and dependent variables. The findings offer some useful implications for owners of a semantic search engine, as far as the design and maintenance of the website is concerned. First, the system should be designed to respond to the user's query as fast as possible. Also it should be designed to support the search process by recommending, revising, and choosing a search query, so as to maximize users' interactions with the system. Second, the system should present search results with maximum recall and currency to effectively meet the users' expectations. Third, it should be capable of providing online services in a reliable and trustworthy manner. Finally, effective increase in user satisfaction requires the improvement of quality factors associated with a semantic search engine, which would in turn help increase the informational gratification for users. The proposed model can serve as a useful framework for measuring the success of a Web-based semantic search engine. Applying the search engine success framework to the measurement of search engine effectiveness has the potential to provide an outline of what areas of a semantic search engine needs improvement, in order to better meet information needs of users. Further research will be needed to make this idea a reality.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

How Enduring Product Involvement and Perceived Risk Affect Consumers' Online Merchant Selection Process: The 'Required Trust Level' Perspective (지속적 관여도 및 인지된 위험이 소비자의 온라인 상인선택 프로세스에 미치는 영향에 관한 연구: 요구신뢰 수준 개념을 중심으로)

  • Hong, Il-Yoo B.;Lee, Jung-Min;Cho, Hwi-Hyung
    • Asia pacific journal of information systems
    • /
    • v.22 no.1
    • /
    • pp.29-52
    • /
    • 2012
  • Consumers differ in the way they make a purchase. An audio mania would willingly make a bold, yet serious, decision to buy a top-of-the-line home theater system, while he is not interested in replacing his two-decade-old shabby car. On the contrary, an automobile enthusiast wouldn't mind spending forty thousand dollars to buy a new Jaguar convertible, yet cares little about his junky component system. It is product involvement that helps us explain such differences among individuals in the purchase style. Product involvement refers to the extent to which a product is perceived to be important to a consumer (Zaichkowsky, 2001). Product involvement is an important factor that strongly influences consumer's purchase decision-making process, and thus has been of prime interest to consumer behavior researchers. Furthermore, researchers found that involvement is closely related to perceived risk (Dholakia, 2001). While abundant research exists addressing how product involvement relates to overall perceived risk, little attention has been paid to the relationship between involvement and different types of perceived risk in an electronic commerce setting. Given that perceived risk can be a substantial barrier to the online purchase (Jarvenpaa, 2000), research addressing such an issue will offer useful implications on what specific types of perceived risk an online firm should focus on mitigating if it is to increase sales to a fullest potential. Meanwhile, past research has focused on such consumer responses as information search and dissemination as a consequence of involvement, neglecting other behavioral responses like online merchant selection. For one example, will a consumer seriously considering the purchase of a pricey Guzzi bag perceive a great degree of risk associated with online buying and therefore choose to buy it from a digital storefront rather than from an online marketplace to mitigate risk? Will a consumer require greater trust on the part of the online merchant when the perceived risk of online buying is rather high? We intend to find answers to these research questions through an empirical study. This paper explores the impact of enduring product involvement and perceived risks on required trust level, and further on online merchant choice. For the purpose of the research, five types or components of perceived risk are taken into consideration, including financial, performance, delivery, psychological, and social risks. A research model has been built around the constructs under consideration, and 12 hypotheses have been developed based on the research model to examine the relationships between enduring involvement and five components of perceived risk, between five components of perceived risk and required trust level, between enduring involvement and required trust level, and finally between required trust level and preference toward an e-tailer. To attain our research objectives, we conducted an empirical analysis consisting of two phases of data collection: a pilot test and main survey. The pilot test was conducted using 25 college students to ensure that the questionnaire items are clear and straightforward. Then the main survey was conducted using 295 college students at a major university for nine days between December 13, 2010 and December 21, 2010. The measures employed to test the model included eight constructs: (1) enduring involvement, (2) financial risk, (3) performance risk, (4) delivery risk, (5) psychological risk, (6) social risk, (7) required trust level, (8) preference toward an e-tailer. The statistical package, SPSS 17.0, was used to test the internal consistency among the items within the individual measures. Based on the Cronbach's ${\alpha}$ coefficients of the individual measure, the reliability of all the variables is supported. Meanwhile, the Amos 18.0 package was employed to perform a confirmatory factor analysis designed to assess the unidimensionality of the measures. The goodness of fit for the measurement model was satisfied. Unidimensionality was tested using convergent, discriminant, and nomological validity. The statistical evidences proved that the three types of validity were all satisfied. Now the structured equation modeling technique was used to analyze the individual paths along the relationships among the research constructs. The results indicated that enduring involvement has significant positive relationships with all the five components of perceived risk, while only performance risk is significantly related to trust level required by consumers for purchase. It can be inferred from the findings that product performance problems are mostly likely to occur when a merchant behaves in an opportunistic manner. Positive relationships were also found between involvement and required trust level and between required trust level and online merchant choice. Enduring involvement is concerned with the pleasure a consumer derives from a product class and/or with the desire for knowledge for the product class, and thus is likely to motivate the consumer to look for ways of mitigating perceived risk by requiring a higher level of trust on the part of the online merchant. Likewise, a consumer requiring a high level of trust on the merchant will choose a digital storefront rather than an e-marketplace, since a digital storefront is believed to be trustworthier than an e-marketplace, as it fulfills orders by itself rather than acting as an intermediary. The findings of the present research provide both academic and practical implications. The first academic implication is that enduring product involvement is a strong motivator of consumer responses, especially the selection of a merchant, in the context of electronic shopping. Secondly, academicians are advised to pay attention to the finding that an individual component or type of perceived risk can be used as an important research construct, since it would allow one to pinpoint the specific types of risk that are influenced by antecedents or that influence consequents. Meanwhile, our research provides implications useful for online merchants (both online storefronts and e-marketplaces). Merchants may develop strategies to attract consumers by managing perceived performance risk involved in purchase decisions, since it was found to have significant positive relationship with the level of trust required by a consumer on the part of the merchant. One way to manage performance risk would be to thoroughly examine the product before shipping to ensure that it has no deficiencies or flaws. Secondly, digital storefronts are advised to focus on symbolic goods (e.g., cars, cell phones, fashion outfits, and handbags) in which consumers are relatively more involved than others, whereas e- marketplaces should put their emphasis on non-symbolic goods (e.g., drinks, books, MP3 players, and bike accessories).

  • PDF

The effect of Big-data investment on the Market value of Firm (기업의 빅데이터 투자가 기업가치에 미치는 영향 연구)

  • Kwon, Young jin;Jung, Woo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.99-122
    • /
    • 2019
  • According to the recent IDC (International Data Corporation) report, as from 2025, the total volume of data is estimated to reach ten times higher than that of 2016, corresponding to 163 zettabytes. then the main body of generating information is moving more toward corporations than consumers. So-called "the wave of Big-data" is arriving, and the following aftermath affects entire industries and firms, respectively and collectively. Therefore, effective management of vast amounts of data is more important than ever in terms of the firm. However, there have been no previous studies that measure the effects of big data investment, even though there are number of previous studies that quantitatively the effects of IT investment. Therefore, we quantitatively analyze the Big-data investment effects, which assists firm's investment decision making. This study applied the Event Study Methodology, which is based on the efficient market hypothesis as the theoretical basis, to measure the effect of the big data investment of firms on the response of market investors. In addition, five sub-variables were set to analyze this effect in more depth: the contents are firm size classification, industry classification (finance and ICT), investment completion classification, and vendor existence classification. To measure the impact of Big data investment announcements, Data from 91 announcements from 2010 to 2017 were used as data, and the effect of investment was more empirically observed by observing changes in corporate value immediately after the disclosure. This study collected data on Big Data Investment related to Naver 's' News' category, the largest portal site in Korea. In addition, when selecting the target companies, we extracted the disclosures of listed companies in the KOSPI and KOSDAQ market. During the collection process, the search keywords were searched through the keywords 'Big data construction', 'Big data introduction', 'Big data investment', 'Big data order', and 'Big data development'. The results of the empirically proved analysis are as follows. First, we found that the market value of 91 publicly listed firms, who announced Big-data investment, increased by 0.92%. In particular, we can see that the market value of finance firms, non-ICT firms, small-cap firms are significantly increased. This result can be interpreted as the market investors perceive positively the big data investment of the enterprise, allowing market investors to better understand the company's big data investment. Second, statistical demonstration that the market value of financial firms and non - ICT firms increases after Big data investment announcement is proved statistically. Third, this study measured the effect of big data investment by dividing by company size and classified it into the top 30% and the bottom 30% of company size standard (market capitalization) without measuring the median value. To maximize the difference. The analysis showed that the investment effect of small sample companies was greater, and the difference between the two groups was also clear. Fourth, one of the most significant features of this study is that the Big Data Investment announcements are classified and structured according to vendor status. We have shown that the investment effect of a group with vendor involvement (with or without a vendor) is very large, indicating that market investors are very positive about the involvement of big data specialist vendors. Lastly but not least, it is also interesting that market investors are evaluating investment more positively at the time of the Big data Investment announcement, which is scheduled to be built rather than completed. Applying this to the industry, it would be effective for a company to make a disclosure when it decided to invest in big data in terms of increasing the market value. Our study has an academic implication, as prior research looked for the impact of Big-data investment has been nonexistent. This study also has a practical implication in that it can be a practical reference material for business decision makers considering big data investment.