• Title/Summary/Keyword: business knowledge

Search Result 2,642, Processing Time 0.027 seconds

A Case Study on Mechanism Factors for Result Creation of Informatization of IT Service Company (IT서비스 기업의 정보화 성과 창출을 위한 메커니즘 요인 사례 연구)

  • Choi, Hae-Lyong;Gu, Ja-Won
    • Management & Information Systems Review
    • /
    • v.36 no.5
    • /
    • pp.1-26
    • /
    • 2017
  • In the meantime, research on corporate informatization focuses on the completeness of information technology itself and its financial effects, so there is insufficient research on whether information technology can support business strategy. It is necessary to verify whether the management strategy implementation of the company can be led through the informatization of the enterprise and the relation between the main mechanism factors and the informatization performance. In this study, what a mechanism factor is applied in the process of result creation of informatization from three mechanism perspectives such as selecting mechanism, learning mechanism and coordinating mechanism with cases of representative domestic IT company and what an importance mechanism factors have been ascertained. This study results in 8 propositions. For a main agent of companies, securement of information capability of organizations has been selected to realize informatization results and investment of informatization has been selected to solve organizational decentralization problems as the most important factor. Additionally, as competition in the industry gets fierce, investment on informatization has been changed to a utility way of implementation of strategies and decision on investment has been made through the official process and information technology. Differentiated company capability has been made based on acquisition of technical knowledge and company information has been expanded to its whole employees through the information system. Also, informatization change management and outside subcontractor management have been acknowledged as an important adjustment factor of company. The first implication of this study is that since case studies on mechanism factors that preceding studies on informatization results did not empirically cover have directly been dealt with based on experiences of executives in charge of business and in charge of informatization, this study can provide practical views about factors that should be mainly managed for informatization results of IT companies. Secondly, since ser-M framework has been applied for IT companies for the first time, this study can academically contribute to companies in other fields about main mechanism factors for result creation of informatization based on deeper understanding and empirical cases.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

An Analysis of the Dynamics between Media Coverage and Stock Market on Digital New Deal Policy: Focusing on Companies Related to the Fourth Industrial Revolution (디지털 뉴딜 정책에 대한 언론 보도량과 주식 시장의 동태적 관계 분석: 4차산업혁명 관련 기업을 중심으로)

  • Sohn, Kwonsang;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.33-53
    • /
    • 2021
  • In the crossroads of social change caused by the spread of the Fourth Industrial Revolution and the prolonged COVID-19, the Korean government announced the Digital New Deal policy on July 14, 2020. The Digital New Deal policy's primary goal is to create new businesses by accelerating digital transformation in the public sector and industries around data, networks, and artificial intelligence technologies. However, in a rapidly changing social environment, information asymmetry of the future benefits of technology can cause differences in the public's ability to analyze the direction and effectiveness of policies, resulting in uncertainty about the practical effects of policies. On the other hand, the media leads the formation of discourse through communicators' role to disseminate government policies to the public and provides knowledge about specific issues through the news. In other words, as the media coverage of a particular policy increases, the issue concentration increases, which also affects public decision-making. Therefore, the purpose of this study is to verify the dynamic relationship between the media coverage and the stock market on the Korean government's digital New Deal policy using Granger causality, impulse response functions, and variance decomposition analysis. To this end, the daily stock turnover ratio, daily price-earnings ratio, and EWMA volatility of digital technology-based companies related to the digital new deal policy among KOSDAQ listed companies were set as variables. As a result, keyword search volume, daily stock turnover ratio, EWMA volatility have a bi-directional Granger causal relationship with media coverage. And an increase in media coverage has a high impact on keyword search volume on digital new deal policies. Also, the impulse response analysis on media coverage showed a sharp drop in EWMA volatility. The influence gradually increased over time and played a role in mitigating stock market volatility. Based on this study's findings, the amount of media coverage of digital new deals policy has a significant dynamic relationship with the stock market.

Moderating Effect of Technology Development Activities Among Entrepreneurial Orientation, the Capability of Technology Innovation and Commercialization Performance: Focused on ICT Technology New Ventures (기술개발활동의 기업가적 지향성, 기술혁신역량과 기술사업화 성과와의 관계에서 조절적 효과 분석: ICT 창업기업을 중심으로)

  • Kim, Chang-Bong;Bae, Keun-Suk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.5
    • /
    • pp.31-47
    • /
    • 2021
  • The purpose of this study is to demonstrate the moderating effect of technology development activities in the relationship between independent variables such as entrepreneurial orientation and technology innovation capabilities and dependent variables. As a result of analyzing the causal relationship between research variables, it was found that the higher the innovation and initiative among the sub-factors of entrepreneurial orientation, the more positive the technical commercialization performance and product completion. Among the sub-factors of entrepreneurial orientation, risk-taking was found to have a significant effect only on product completion. It was found that the higher the technology commercialization capability and technology convergence capability, the higher the technology commercialization performance, the technology commercialization performance. As a result of analyzing the moderating effect of technology development activities, it was found that technology development management ability, a sub-factor of technology development activities, controls the influence relationship between innovation and risk sensitivity and technology performance. In addition, it was found that the involvement in technology development planning controls the influence relationship between technology convergence capability and technology performance among sub-factors of technology innovation capability. Based on the above analysis results, this study made three suggestions as follows. First, the achievements of technology commercialization to achieve the superiority of corporate competition depend on progressive innovation and risk-taking based on entrepreneurial orientation. It is necessary to find a way to build entrepreneurial orientation from within the organization. Second, due to the nature of the ICT industry, which has a fast pace of technological development and changes in market acceptance, technology commercialization performance will be positive when the capabilities, technology, knowledge, and resources that can quickly lead to product production can be organically linked. Finally, corporate CEOs need to further promote innovation and risk-taking through phased and continuous research activities for technology development. In addition, it is necessary to establish a corporate culture that tolerates various strategies and failures so that understanding of technology convergence can lead to technological performance.

Smart farm development strategy suitable for domestic situation -Focusing on ICT technical characteristics for the development of the industry6.0- (국내 실정에 적합한 스마트팜 개발 전략 -6차산업의 발전을 위한 ICT 기술적 특성을 중심으로-)

  • Han, Sang-Ho;Joo, Hyung-Kun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.147-157
    • /
    • 2022
  • This study tried to propose a smart farm technology strategy suitable for the domestic situation, focusing on the differentiation suitable for the domestic situation of ICT technology. In the case of advanced countries in the overseas agricultural industry, it was confirmed that they focused on the development of a specific stage that reflected the geographical characteristics of each country, the characteristics of the agricultural industry, and the characteristics of the people's demand. Confirmed that no enemy development is being performed. Therefore, in response to problems such as a rapid decrease in the domestic rural population, aging population, loss of agricultural price competitiveness, increase in fallow land, and decrease in use rate of arable land, this study aims to develop smart farm ICT technology in the future to create quality agricultural products and have price competitiveness. It was suggested that the smart farm should be promoted by paying attention to the excellent performance, ease of use due to the aging of the labor force, and economic feasibility suitable for a small business scale. First, in terms of economic feasibility, the ICT technology is configured by selecting only the functions necessary for the small farm household (primary) business environment, and the smooth communication system with these is applied to the ICT technology to gradually update the functions required by the actual farmhouse. suggested that it may contribute to the reduction. Second, in terms of performance, it is suggested that the operation accuracy can be increased if attention is paid to improving the communication function of ICT, such as adjusting the difficulty of big data suitable for the aging population in Korea, using a language suitable for them, and setting an algorithm that reflects their prediction tendencies. Third, the level of ease of use. Smart farms based on ICT technology for the development of the Industry6.0 (1.0(Agriculture, Forestry) + 2.0(Agricultural and Water & Water Processing) + 3.0 (Service, Rural Experience, SCM)) perform operations according to specific commands, finally suggested that ease of use can be promoted by presetting and standardizing devices based on big data configuration customized for each regional environment.

The Effect of Technology Startups' Value Chain Internal and External Network Activities on Competitive Advantage Through Dynamic Capabilities (기술창업기업의 가치사슬내부 및 외부 네트워크 활동이 동적역량을 매개로 경쟁우위에 미치는 영향)

  • Hong, Inki;Kim, Hyung-Jun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.5
    • /
    • pp.17-30
    • /
    • 2022
  • It has been verified in several studies that dynamic capabilities has a very important effect on the competitive advantage of technology startups. And the network has an important influence on this dynamic capability. This is even more important for start-ups that lack the resources and knowledge. Networks that directly and significantly affect dynamic capabilities have been studied mainly the value chain internal. However, network activities of start-ups are conducted not only with the value chain internal networks but also with the value chain external networks. Therefore, it is necessary to study the effect of the value chain internal and external network activity of start-ups on the dynamic capabilities, but prior studies are lacked. In this study, We make a model that encompass the value chain internal and external network for technology startups, and a study was conducted to demonstrate the effect on dynamic capabilities and competitive advantage. As a result of the study, value chain internal network activity directly and significantly affected dynamic capabilities, and value chain external network activity did not directly significantly affect dynamic capacity. And dynamic capabilities had a significant effect on competitive advantage. As confirmed through additional research, value chain external network activity affects value chain internal network activity, and through this, dynamic capabilities are strengthened, and positively affect competitive advantage.. The intensity of value chain external network activity was not significant to dynamic capabilities and the diversity of value chain external network activity had a significant effect on the competitive advantage by double mediating the value chain internal network activity and dynamic capability. Through this study, it is confirmed that the value chain internal networks is important in order for startups to strengthen their dynamic capabilities and increase their competitive advantage, and that both strong and diversified the value chain internal networks positively affects competitive advantage by enhancing dynamic capabilities.

A Study on the Effect of Organizational Learning Culture Perceived by Members on Task and Contextual Performance in the Mediating Effect of Organizational Communication (구성원이 인식한 조직학습문화가 조직 커뮤니케이션을 매개로 과업·맥락성과에 미치는 영향에 관한 연구)

  • Kang, Hee Kyung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.3
    • /
    • pp.201-214
    • /
    • 2022
  • This study theoretically and empirically examined whether organizational communication mediates the effect of organizational learning culture perceived by members in the organization on task performance and contextual performance. Organizational learning culture is defined as a culture that is good at creating, acquiring, transferring, and modifying behavior to reflect new knowledge and insights. The hypothesis of this study is that the perceived organizational learning culture can increase performance through organizational communication between members. In particular, we measured communication within the organization into three types: upward, horizontal, and downward. These communications were set as mediating variables. In empirical studies, independent variables were perceived organizational learning culture, mediation variables were upward, horizontal and downward communication, and dependent variables were task performance and contextual performance. Hypothesis 1 is that the organizational learning culture will have a positive effect on employees' tasks and contextual performance. Hypothesis 2 is about the mediating effect of communication on the relationship between Hypothesis 1. In the empirical study, after verifying the validity and reliability of the research variables, correlation analysis and hypothesis verification were conducted. Hypothesis 1 was verified through regression analysis, and all detailed hypotheses were supported. To verify Hypothesis 2, we conducted a bootstrap test using process macro to separate the total, direct, and indirect effects and examine the significance of the indirect effects. As a result, Hypothesis 2 was partially supported. Downward communication mediated organizational learning culture and task and contextual performance, and horizontal communication mediated organizational learning culture and contextual performance. The mediating effect of upward communication was not significant. The results of this study contributed to the suggestion of implications, research limitations, and research directions. Organizational learning culture is the direction and intention of the organization to achieve its goals through the learning and growth of its members. By strengthening internal motivation, organizational members can take voluntary desirable actions that help groups and organizations as well as essential tasks given. since this relationship appears as a medium of downward communication, organizations can strengthen the relationship between organizational learning culture and performance through leadership education.

Violations of Information Security Policy in a Financial Firm: The Difference between the Own Employees and Outsourced Contractors (금융회사의 정보보안정책 위반요인에 관한 연구: 내부직원과 외주직원의 차이)

  • Jeong-Ha Lee;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.18 no.4
    • /
    • pp.17-42
    • /
    • 2016
  • Information security incidents caused by authorized insiders are increasing in financial firms, and this increase is particularly increased by outsourced contractors. With the increase in outsourcing in financial firms, outsourced contractors having authorized right has become a threat and could violate an organization's information security policy. This study aims to analyze the differences between own employees and outsourced contractors and to determine the factors affecting the violation of information security policy to mitigate information security incidents. This study examines the factors driving employees to violate information security policy in financial firms based on the theory of planned behavior, general deterrence theory, and information security awareness, and the moderating effects of employee type between own employees and outsourced contractors. We used 363 samples that were collected through both online and offline surveys and conducted partial least square-structural equation modeling and multiple group analysis to determine the differences between own employees (246 samples, 68%) and outsourced contractors (117 samples, 32%). We found that the perceived sanction and information security awareness support the information security policy violation attitude and subjective norm, and the perceived sanction does not support the information security policy behavior control. The moderating effects of employee type in the research model were also supported. According to the t-test result between own employees and outsourced contractors, outsourced contractors' behavior control supported information security violation intention but not subject norms. The academic implications of this study is expected to be the basis for future research on outsourced contractors' violation of information security policy and a guide to develop information security awareness programs for outsourced contractors to control these incidents. Financial firms need to develop an information security awareness program for outsourced contractors to increase the knowledge and understanding of information security policy. Moreover, this program is effective for outsourced contractors.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.