• Title/Summary/Keyword: buried gas pipe

Search Result 62, Processing Time 0.023 seconds

A Study for Comparison of Consequence Analysis for Buried Pipeline Considering the Depth Factor (깊이 인자를 고려한 매설배관의 사고피해영향 비교 분석에 관한 연구)

  • Han, Seung-Hoon;Seol, Ji-Woo;Yoo, Byong-Tae;Tae, Chan-Ho;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.9-16
    • /
    • 2016
  • Buried pipe system is subject to leak or rupture due to internal and external defects with age. Especially, if the pipeline is designed for pressurized gas, the leak can wreak a devastating on its surrounding area. The current method of setting up underground gas pipeline is based on OGP criteria of applying one tenth of the inner pipe pressure. The criteria is applied irrespective of their burial depth or pipe's properties. At times, even the whole safety measures are totally ignored. Considering the magnitude of possible damage from a gas leakage, a precise analytical tool for the risk assessment is urgently needed. The study was conducted to assess possible scenarios of gas accidents and to develop a computer model to minimize the damage. The data from ETA was analyzed intensively, and the model was developed. The model is capable of predicting jet fire influence area with comprehensive input parameters, such as burial depth. The model was calibrated and verified by the historic accident data from Edison Township, New Jersey, the United States. The statistical model was also developed to compare the results of the model in this study and the existing OGP model. They were in good agreement with respect to damage predictions, such as radiation heat coming from 10 meters away from the heat source of gas flame.

The Development of Buried Type Reference Electrode Using Porous Ceramic(${\alpha}-Al_{2}O_{3}$) (다공성 세라믹(${\alpha}-Al_{2}O_{3}$)를 이용한 지중 매설형 기준전극)

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.145-147
    • /
    • 2005
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential due to stray current of subway system. So, we have developed the Real-time Wireless Remote Monitoring System for Stray Current of Subway System. In this system, the permanent buried type reference electrode is necessary. In this paper, results of development of buried type reference electrode using porous ceramic$({\alpha}-Al_{2}O_{3})$ are presented.

  • PDF

Introduction to Image Processing Technology for Precise Positioning of Underground Buried Lifelines (영상정보 기반 지하매설관 정밀 위치조사 기술 소개)

  • Ryu, Byunghyun;Cheon, Jangwoo;Lee, Chulhee;Lee, Impyeong;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.51-57
    • /
    • 2021
  • Underground lifelines such as water supply/sewer pipe, power cable and gas pipe are indispensable facilities to the life of urban society. These lifelines have been constructed long time ago and buried positioning information is not precisely recorded. Moreover, they have been concentrated on the narrow area and are complicatedly entangled in 3-dimension. In the fourth industrial revolution, a 3-dimensional visualization for underground lifelines is strongly required, and a database (D/B) with precise positioning information should be preceded. In this study, image processing technology for precise positioning of underground buried lifelines is introduced, which is able to build the database more accurately, efficiently and practically.

A Study on an Acoustical Model for Gas Leak Detection in a Pipeline (배관계의 가스누설탐지를 위한 음향모델 연구)

  • Yang, Yoon-Sang;Lee, Dong-Hoon;Koh, Jae-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • An acoustical model for detecting the leak location in a buried gas pipeline has been developed. This model is divided into an experimental model for sound diagnosis, and a theoretical model for sound prediction, which is based on the transfer matrix method, representing the sound pressure and the volume velocity as state variables. The power spectrum is measured by attaching only one microphone to the closed end pipe. It has been shown that the response magnitude of acoustic pressure signals calculated by the acoustical model depends upon the thickness and diameter of a pinhole. The validity for the acoustical model has been verified through a comparison between the measured and calculated results.

The Usability of Zinc Electrode using Wireless Measuring System of Electric Potential (무선전위측정시스템에 사용하는 아연전극 활용성 검토)

  • Lee, Jong-Rark;Leem, Sa-Hawn;Kim, Sang-O
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.177-180
    • /
    • 2006
  • This study is to make a basic study if solid zinc (Zn) can be used for buried reference electrode, so we examined the adequacy of zinc as reference electrode by using zinc which showed regular electrode for buried period. The deference of electric potential if zinc electrode for corrosion factor such as soil resistivity or pH didn't show fixed trend and there was no clear trend on the change of measurement period. From field test, it is known that the natural electric potential difference of CSE electrode and zinc electrode is 1,100mV, but the electric potential of zinc electrode for CSE electrode in the natural soil and copying soil was 1,094~1,158mV. There was no fixed trend on the change of measurement period and electric potential difference of zinc electrode for corrosion factors such as soil resistivity or pH. Consequently, there was 40~60mV of electric potential difference in every copying soil during the experiment measurement.

  • PDF

A Study on the Compressible Fluid Leak Position Detection of Buried Pipelines (매설배관 내의 압축성 유체 누설 위치 검출에 관한 연구)

  • Lee, Jeong-Han;Kim, Hyung-Jin;Yoon, Doo-Byung;Park, Jin-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.40-49
    • /
    • 2016
  • When a leak occurs in the buried pipelines, The leak locations are able to detected by using the vibration sensors. These leak detection system, intended for incompressible fluid, such as water, are of using the wave propagation velocity and a signal arrival time delay between the sensors. In this paper, to develop a leak location detection system for a compressible fluid such as gas, the conventional detection methods have been studied, improved, and verified through the experiment using the compressed air. It confirmed that it is possible to detect the leak location for compressible fluid in the buried pipelines and to be applicable to the development of a leak location detection system in buried pipelines for gas.

Development of the computer program calculating the stress induced by various loads for buried natural gas pipeline ( I ) (매설 천연가스 배관의 제반하중에 의한 응력 계산용 프로그램 개발 (I))

  • Bang I.W.;Kim H.S.;Kim W.S.;Yang Y.C.;Oh K.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.18-25
    • /
    • 1998
  • According to the requirements of ANSI B3l.8, the pipe thickness is determined with hoop stress resulted from internal pressure. And the other loads induced by soil, vehicle, thermal expansion, ground subsidence, etc shall be evaluated rationally. There are two ways of calculating stress of buried gas pipeline. The first is FEM. FEM can calculate the stress regardless of the complexity of pipeline shape and boundary conditions. But it needs high cost and long time. The second is the way to use equation. The reliable equations to calculate the stress of buried gas pipeline was developed and have been used in designing pipeline and evaluating pipeline safety, But these equation are very difficult to understand and use for non-specialist. For easy calculation of non-specialist, the new computer program to calculate stress of buried natural gas pipeline have been developed. The stress is calculated by the equations and extrapolation of the graph resulted from FEM. The full paper is consist of series I and II. In this paper, series I, the calculating equation of the program is explained in detail.

  • PDF

The Buried Type Reference Electrode for Real time Wireless Remote Monitoring System for Stray Current of Subway System (지하철 누설전류의 실시간 무선 원격 감시 시스템용 매설형 기준전극)

  • Bae, Jeong-Hyo;Ha, Yoon-Cheol;Ha, Tae-Hyun;Lee, Hyun-Goo;Lee, Jae-Duck;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2732-2734
    • /
    • 2005
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential due to stray current of subway system. So, we have developed the Real-time Wireless Remote Monitoring System for Stray Current of Subway System. In this system, the permanent buried type reference electrode is necessary. In this paper, results of development about the permanent buried type reference electrode($Cu/CuSO_4$) are presented.

  • PDF

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Long-term Ring Deflection Prediction of GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 GFRP관의 장기관변형 예측)

  • Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, underground pipes are utilized in various fields of applications such as sewer lines, drain lines, water mains, gas lines, telephone and electrical conduits, culverts, oil lines, etc. Most of pipes are installed for long-term purposes and they should be safely installed in consideration of installation conditions because there are unexpected various terrestrial loading conditions. In this paper, we present the result of investigation pertaining to the structural behavior of glass fiber reinforced thermosetting polymer plastic (GFRP) flexible pipes buried underground. The mechanical properties of the GFRP flexible pipes produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, ring deflection is measured by the field tests and the finite element analysis (FEA) is also conducted to simulate the structural behavior of GFRP pipes buried underground. From the field test results, we predicted long-term, up to 50 years, ring deflection of GFRP pipes buried underground based on the method suggested by the existing literature. It was found that the GFRP flexible pipe to be used for cooling water intake system in the nuclear power plant is appropriate because 5% ring deflection limitation for 50 years could be satisfied.