• 제목/요약/키워드: bulking effect

검색결과 61건 처리시간 0.026초

Dimensional Stability of Korean Red Pine Wood Treated with Water-Soluble Melamine-Formaldehyde Resin

  • Han, Gyu-Seong
    • 한국가구학회지
    • /
    • 제20권3호
    • /
    • pp.247-252
    • /
    • 2009
  • The objective of this study was the dimensional stabilization of Korean red pine (Pinus densiflora) wood by the water-based thermosetting resin. A commercial melamine-formaldehyde resin was impregnated into wood samples and cured. The weight and dimensional change of woods treated by the resin, and the absorption and dimensional behavior of treated woods were investigated. The melamine-formaldehyde resin treatment improved significantly the dimensional stability of pine wood and showed about 40% of antiswelling efficiency. The mechanism of dimensional stabilization was interpreted as the complicated reason, such as bulking effect by the resin in cell wall, mechanical restraint and/or blocking of hygroscopic site by the resin in lumen.

  • PDF

A Study on the Ultimate Strength Behaviour of Stiffened Plate according to the Stiffener Section

  • Ko Jae-Yogn;Park Joo-Shin;Park Sung-Hyeon
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 춘계학술발표회
    • /
    • pp.113-119
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members In the ultimate limit state design. therefore. a primary task is to accurately calculate the budding and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately. resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression.

  • PDF

가공계분 함유 혼합유기질비료의 시비효과 (Growth Effect of Mixed Organic Fertilizer Blending Poultry Manure Compost in Leaf Vegetables)

  • 김영선;이태순;조성현;정제용;안지예;이종진;한기필;홍주화
    • 유기물자원화
    • /
    • 제25권3호
    • /
    • pp.45-54
    • /
    • 2017
  • 유기질비료 원료로서 가공계분은 질소, 인산, 칼리함량이 높고 본 연구는 수분조절제의 종류에 따라 다른 특성을 나타낸다. 본 연구는 수분조절제로서 톱밥과 피트모스를 혼합하여 발효한 두 종류의 가공계분을 혼합유기질비료의 원료로 이용하였을 때, 배합비율별 유기질비료의 이화학적 특성 및 작물생육 특성을 조사하였다. 톱밥이나 피트모스를 수분조절제로 첨가하여 발효시킨 가공계분이 함유된 혼합유기질비료는 가공계분이 10~30 % 함유된 혼합유기질비료에서 비료공정규격에 적합하였다. 톱밥 가공계분(PMCS)이나 피트모스 가공계분(PMCP)을 10~30 %정도 함유한 혼합유기질비료 처리구는 작물의 생육(건물중)이 증가하였다. 가공계분별 배합비율과 작물생육지수와 상관관계를 조사한 결과, PMCS 함유 혼합유기질비료와 작물의 생육 지수에서 영향을 미치지 않았고, PMCP 함유 혼합유기질비료의 시비는 작물의 생육 및 생산량이 증가하였다(P<0.05). 이들 결과를 종합할 때, 가공계분은 혼합유기질비료의 원료로 사용이 가능하였고, 혼합유기질비료 중 가공계분의 적정함유량은 10~30 %였으며, 시비에 의해 작물 생육이 증가하였다.

Behavior of circular concrete-filled steel tubular columns under pure torsion

  • Ding, Fa-xing;Fu, Qiang;Wen, Bing;Zhou, Qi-shi;Liu, Xue-mei
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.501-511
    • /
    • 2018
  • Concrete-filled steel tubular (CFT) columns are commonly used in engineering structures and always subjected to torsion in practice. This paper is thus devoted to investigate the mechanical behavior of circular CFT columns under pure torsion.3D finite element models based on reasonable material constitutive relation were established for analyzing the load-strain ($T-{\gamma}$) curves of circular CFT columns under pure torsion. The numerical simulation indicated that local bulking of the steel tube in CFT columns was prevented and the shear strength and ductility of the core concrete were significantly improved due to the confinement effect between the steel tube and the core concrete. Based on the results, formulas to predict the torsional ultimate bearing capacity of circular CFT columns were proposed with satisfactory correspondence with experimental results. Besides, formulas of composite shear stiffness and the overall process of the $T-{\gamma}$ relation of circular CFT columns under pure torsion were proposed.

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

활성슬러지공정의 수리학적 충격부하 반응 (Hydraulic Shock Load Response of Activated Sludge Process)

  • 황규대;김민호;고새봄;조철휘
    • 상하수도학회지
    • /
    • 제11권3호
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF

Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

  • Kim, Eunjong;Lee, Dong-Hyun;Won, Seunggun;Ahn, Heekwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권5호
    • /
    • pp.753-758
    • /
    • 2016
  • Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg $O_2/g$ VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

음식물쓰레기 퇴비화에서 혼합물 특성이 퇴비화에 미치는 영향 (An Influence of Mixing Material Characteristics on the Composting of Food Waste)

  • 정준오;권혁구;이장훈
    • 한국환경보건학회지
    • /
    • 제28권5호
    • /
    • pp.22-27
    • /
    • 2002
  • The composting practice has been recognized as the most popular way of controlling food waste and many attempt have been made in the field to establish more efficient and economical process. Some of the efforts are mixing cured compost with sawdust as alternative bulking agent, seeding commercially produced microorganism and/or combination of above. However, verification of such efforts is often restricted because of either the lack of engineering consideration on the limitation of composting facility scales. In this study, the effect of mixing materials in food waste composting was investigated by controlling the combination and the mixing ratio of them. When the cured compost was mixed with saw dust. the decomposition of organic material was proven to be more active by observing the compost temperature, the oxygen (O$_2$) consumption, and the cumulative carbon dioxide ($CO_2$) profile. However, the quantity of compost mix-ing seemed not to influence the reaction as long as the minimum required amount was mixed. The feeding of com-mercially produced microorganism had a tendency to prolong the thermophilic stage, which helped to increase the decomposition but it resulted in composting period. Regardless of the composting condition, bacteria and actinomycetes increased in population as the reaction approached to the end. The population of bacteria and actinomycetes were rel-atively higher than those of fungi and yeast throughout the reaction.

Effect of Extenders with TCG and DMSO on the Viability of Rabbit Sperm

  • Eo, Yeol;Kim, Sang Hwan;Bang, Seong-Gyu;Oh, Min-Gee;Park, Chan-Hee;Yoon, Jong Taek
    • 한국동물생명공학회지
    • /
    • 제34권2호
    • /
    • pp.100-105
    • /
    • 2019
  • The purpose of this study was to evaluate the effect of addition of ethylene glycol, glycerol and sucrose to TCG (Tris, Citric Acid, Glucose, Egg Yolk) and DMSO Frozen. The extender containing Egg yolk concentration (10%, 20%) affects viability and acrosome morphology of rabbit sperm. Sperm viability was then assessed for the freezing extenders TCGD (Tris + Citricacid + Glucose + DMSO), TCGED (Tris + Citricacid + Glucose + Egg yolk + DMSO), TCGGD (Tris + Citricacid + Glucose + Glycerol + DMSO) and TCGSD Tris + Citricacid + Glucose + Sucrose + DMSO) during thawing at 38℃. for 20 seconds, respectively. TCG + 10% egg yolk (viability: 77.0 ± 0.8, NAI: 73.3 ± 0.9) was significantly (sperm viability and normal acrosome interaction (NAI)) higher than TCG + 20% egg yolk (70.7 ± 1.1, 70.0 ± 0.9) in the sperm normalcy analysis according to the yolk concentration. TCGGD (53.4 ± 0.1, 62.3 ± 0.4), TCGSD (61.3 ± 0.0, 67.1 ± 0.1) sperm viability and normal acrosome interaction (NAI) in frozen spermatozoa are TCGD (46.4 ± 2.8 and 56.3 ± 1. 4) and TCGED (23.0 ± 1.1 and 54.6 ± 1.4) extenders was thawed at 38℃ for 20 seconds. According to the results from each frozen bulking agent, sperm membrane integrity by hypotonic swelling test (HOST) analysis in TCGGD (59.8 ± 0.7), TCGSD (59.3 ± 0.5) was significantly high compared to other experimental groups (p < 0.05). In conclusion, these results suggested that TCGGD and TCGSD extenders enhance survivability of rabbit sperm after frozen-thawing.

Improvement of Fast-Growing Wood Species Characteristics by MEG and Nano SiO2 Impregnation

  • DIRNA, Fitria Cita;RAHAYU, Istie;ZAINI, Lukmanul Hakim;DARMAWAN, Wayan;PRIHATINI, Esti
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.41-49
    • /
    • 2020
  • Jabon (Anthocephalus cadamba) is a fast-growing wood species that is widely utilized for light construction and other purposes in Indonesia. The objectives of the current study were to determine the effects of monoethylene glycol (MEG) and SiO2 nanoparticles (nano SiO2) impregnation treatment on the dimensional stability and density of jabon wood and to identify the characteristics of impregnated jabon wood. Wood samples were immersed in water (as untreated), MEG, 0.5% MEGSiO2, then impregnated by applying 0.5 bar of vacuum for 60 min, and then applying 2.5 bar of pressure for 120 min. The results showed that impregnation with MEG and Nano SiO2 had a significant effect on the dimensional stability of jabon wood. Polymers can fill cell walls in wood indicated by increasing weight percentgain, antiswelling efficiency, bulking effect, and density, then decreasing in water uptake value. Jabon wood morphology by using SEM showed that MEGSiO2 polymers can cover part of the pitsin the wood vessel wall of jabon. This finding was reinforced by EDX results showing that the silicon content was increased due to the addition of SiO2 nano. The XRD diffraction pattern indicated that MEGSiO2 treatment increased the degree of crystallinity in wood samples. Overall, treatment with 0.5% MEGSiO2 led to the most improvement in the dimensional stability of 5-year-old jabon wood in this study.