• Title/Summary/Keyword: bulk metallic glass

Search Result 95, Processing Time 0.043 seconds

Influence of Stress-strain on the Microstructural Change in the Metallic Glass and Metallic Glass Matrix Composite

  • Kim, Song-Yi;Lee, A-Young;Oh, Hye-Ryung;Lee, Min-Ha
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.44-51
    • /
    • 2015
  • At room temperature, metallic glasses deform inhomogeneously by strain localization into narrow bands as a result of yielding due to an external force. When shear bands are generated during deformation, often nanocrystals form at the shear bands. Experimental results on the deformation of bulk metallic glass in the current study suggest that the occurrence of nanocrystallization at a shear band implies the loading condition that induces deformation is more triaxial in nature than uniaxial. Under a compressive stress state, the geometrical constraint strain imposed by the stress triaxiality plays a crucial role in the deformation-induced nanocrystallization at the shear bands.

Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders (연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구)

  • Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

Fabrication and Mechanical Properties of Nanoquasicrystalline Phase Reinforced Ti-based Bulk Metallic Glass Matrix Composites (나노 준결정상으로 강화된 Ti계 벌크 비정질기지 복합재의 제조 및 기계적 특성 고찰)

  • Park, Jin-Man;Lim, Ka-Ram;Kim, Tae-Eung;Sohn, Sung-Woo;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.28 no.6
    • /
    • pp.261-267
    • /
    • 2008
  • In-situ quasicrystalline icosahedral (I) phase reinforced Ti-based bulk metallic glass (BMG) matrix composites have been successfully fabricated by using two distinct thermal histories for BMG forming alloy. The BMG composite containing micron-scale Iphase has been introduced by controlling cooling rate during solidification, whereas nano-scale I-phase reinforced BMG composite has been produced by partial crystallization of BMG. For mechanical properties, micron-scale I-phase distributed BMG composite exhibited lower strength and plasticity compared to the monolithic BMG. On the other hand, nano-scale icosahedral phase embedded BMG composite showed enhanced strength and plasticity. These improved mechanical properties were attributed to the multiplication of shear bands and blocking of the shear band propagation in terms of isolation and homogeneous distribution of nanosize icosahdral phases in the glassy matrix, followed by stabilizing the mechanical and deformation instabilities.

Characteristics of Friction Welding of Bulk Metallic Glass Rods and Tubes (벌크 비정질 금속 봉재 및 튜브재의 마찰접합 특성)

  • Shin, Hyung-Seop;Park, Jung-Soo;Jung, Yoon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.687-692
    • /
    • 2009
  • The friction welding of Zr-based bulk metallic glass (BMG) rods and tubes to similar BMGs, and to crystalline metals were performed. An infrared thermal imager (FLIR-Thermal Cam SC-2000) was used to measure the temperature distribution at joining interface of the specimens during friction welding. All BMGs adopted in this study showed a successful friction joining to similar BMG. The shape of the protrusion formed at the weld interface were examined. In order to characterize the friction weld interface, the micrographic observation and the X-ray diffraction analysis on the weld cross-section were carried out. The obtained results were discussed based on the temperature distribution measured at the weld interface A successful joining of the BMGs to crystalline metals could be obtained for certain pairs of the material combination through the precise control of the friction condition. The residual strength after dissimilar friction welding of BMG was evaluated by the four-point bending test and compared with the cases of friction welding to similar materials.

Glass Forming Ability of Bulk Amorphous Alloy Scrap by Fluxing (플럭스처리에 의한 벌크비정질합금 스크랩의 비정질형성능)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.94-99
    • /
    • 2010
  • When the returned scrap of bulk amorphous alloy is remelted, impurities such as oxides and intermetallic compounds increase. Glass forming ability of its scrap is deteriorated remarkably. Melt fluxing technique is introduced to enhance the glass forming ability during melting and freezing of bulk amorphous alloys. Cu and Zr based alloys are chosen. Small pieces of these alloy scraps and $B_2O_3$ flux are put together in a quartz tube. Cyclic heating and cooling are done by induction heating and water quenching or air cooling. Melting fluxing was effective for both Cu-based and Zr-based alloy, and their glass forming abilities were improved with increasing the number of fluxing.

Micro Forming of Metallic Micro-parts and Surface Patterns by Employing Vibrational Load (진동 하중을 이용한 마이크로 부품 및 표면 패턴 성형 기술)

  • Na, Y.S.;Lee, J.H.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.64-67
    • /
    • 2009
  • Vibrational micro-forming of pyramidal shape patterns was conducted for an Al superplastic alloy, Al 5083 and a Zr-based bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. A vibrational micro-forming system was specially designed for generating vibrational load by combining a PZT actuator with a signal generator. Single crystal Si micro dies with wet-etched pyramidal patterns were used as master dies for vibrational micro-forming. The micro-formed pattern height was increasing with increasing the frequency of the vibrational load. In particular, the vibrationally-microformed pattern height was similar or even higher than the statically-microformed pattern height when the load frequency exceeded about 125 kHz. It was also observed that the crystal grains affect the surface quality of the microformed pattern and the distribution of the pattern height in the die cavity array.

  • PDF

Evaluation on Liquid Formability of Bulk Amorphous Alloys (벌크비정질합금의 액상 성형성 평가)

  • Joo, Hye-Sook;Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.