• Title/Summary/Keyword: bulk compressibility

Search Result 34, Processing Time 0.016 seconds

Influence of the Starting Materials and Sintering Conditions on Composition of a Macroporous Adsorbent as Permeable Reactive Barrier (초기 소재와 소성조건이 투수반응벽체인 대공극흡착제 조상에 미치는 영향)

  • Chung, Doug-Young;Lee, Bong-Han;Jung, Jae-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • In this investigation, we observed surface morphology and porosity of a macroporous adsorbent made of Na-bentonite and Ca-bentonite as structure formation materials and grounded waste paper as macropore forming material for the development of a permeable reactive barrier to remove heavy metals in groundwater. Therefore, we selected minerals having higher cation exchange capacity among 2:1 clay minerals and other industrial minerals because sintering can significantly influence cation exchange capacity, resulting in drastic decrease in removal of heavy metals. The results showed that the increasing sintering temperature drastically decreased CEC by less than 10 % of the indigenous CEC carried by the selected minerals. One axial compressibility test results showed that the highest value was obtained from 5% newspaper waste pulp for both structure formation materials of Na-bentonite and Ca-bentonite although there were not much difference in bulk density among treatments. The pore formation influenced by sintering temperature and period contributes removal of heavy metals passing through the sintered macroporous media having different water retention capacity.

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.

Physical Properties of Red Pepper Powder at Different Particle Sizes (고춧가루의 입도별 물리적 특성)

  • Oh, Seung Hee;Kang, You Ri;Lee, Sang Hoon;Hwang, In Guk;Yoo, Seon Mi;Kim, Hae Young;Lee, Junsoo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.421-426
    • /
    • 2013
  • We evaluated physical properties such as density, compressive characteristics, irrecoverable work, and stress relaxation of red pepper powder with different particle sizes. The particle sizes showed a normal distribution in size, with a particle size of $150{\sim}600{\mu}m$ accounting for 70.95% of the particles in the Hanbando cultivar and 82.21% in the Cheongyang cultivar. Loose bulk density ranged between 0.34 and $0.45g/cm^3$, while tapped bulk density ranged between 0.43 and $0.56g/cm^3$. The Hausner ratio was highest (1.531) at a particle size below $150{\mu}m$ in the Cheongyang cultivar. The compressibility and compression ratios were 0.001351~0.004383 and 1.0062~1.0265, respectively. Irrecoverable work ranged between 69.16% and 90.24%. The $K_2$ value and stress relaxation characteristics were greatest (1.74 and 44.92%, respectively) at particle sizes of $300{\sim}425{\mu}m$ in the Cheongyang cultivar. The dynamic angle of repose was $32.84-49.84^{\circ}$. Overall, particle sizes below $150{\mu}m$ had the highest compactibility, cohesiveness, and transformation.

Physical Characteristics of Red Pepper Powder by Cultivation Area and Variety (품종과 재배지역에 따른 고춧가루의 물리적 특성)

  • Oh, Seung-Hee;Kim, Hyun-Young;Hwang, Cho-Rong;Hwang, In-Guk;Hwang, Young;Yoo, Seon-Mi;Kim, Haeng-Ran;Kim, Hae-Young;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.4
    • /
    • pp.599-605
    • /
    • 2011
  • This study investigated the physical properties of red pepper powders according to cultivation area and variety. Values for density, compressive characteristics, dynamic angle, irrecoverable work, and stress relaxation were analysed. Loose bulk density ranged between 0.40 and 0.50 g/$cm^3$, and tapped bulk density ranged between 0.49 and 0.67 g/$cm^3$. The highest Hausner ratio was 1.369 for PRmanitta cultivated in Eumseong and the lowest value of was 0.194 for Buchon cultivated in Yeongyang. Compressibility ranged between 0.0046 and 0.0092. The highest compression ratio was 1.040 for Myeongjak cultivated in Suwon, and the lowest value was 1.007 for Buchon cultivated in Yeongyang. Dynamic angles ranged between 35.14 and $41.70^{\circ}$. The highest irrecoverable work value was 79.9% for PRmanitta cultivated in Eumseong and the lowest value was 67.9% for Nokgwang cultivated in Suwon. The greatest $k_2$ and relaxation values of stress relaxation characteristics were 1.56 and 42.03%, respectively, for Cheongyang cultivated in Yeongyang.