• Title/Summary/Keyword: bulk amorphous alloy

Search Result 64, Processing Time 0.023 seconds

Fabrication of Bulk Metallic Glass Alloys by Warm Processing of Amorphous Powders (비정질 분말의 열간 성형법에 의한 벌크 비정질합금의 제조)

  • 이민하;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.193-201
    • /
    • 2004
  • 1960년 Au-Si계 합금에서 처음으로 비정질상이 급속 응고법에 의해 보고된 이래/sup 1)/ 지난 40년 간 많은 합금계에서 비정질상이 보고되어졌다. 대표적으로 Fe-, Ni-, Co기 합금 등 많은 합금계에서 비정질상이 보고되었으나, 비정질상의 형성을 위해서는 약 105 K/s이상의 높은 냉각속도를 필요로 하였다. 1980년대 수백 K/s의 낮은 냉각속도 하에서도 비정질상이 형성될 수 있는 다원계 합금(multi-component alloy)이 Mg-Ln-(Ni, Cu, Zn), Ln-Al-TM 합금에서 보고되어 졌으나 많은 관심을 받지 못하다가 1993년 Zr-Ti-Ni-Cu-Be 합금에서 수 ㎝ 크기의 비정질합금 제조가 보고되면서 전 세계적으로 많은 관심을 받게 되었다. Zr-Ti-Ni-Cu-Be계 벌크 비정질 합금이 보고된 후 Zr-(Nb,Pd)-Al-TM, Pd-Cu-Ni-P, Fe-Co-Zr-Mo-W-B, Ti-Zr-Ni-Cu-Sn등 여러 합금계에서 벌크 비정질 합금이 보고되었다. (중략)

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

Enhanced Si based negative electrodes using RF/DC magnetron sputtering for bulk lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.277-277
    • /
    • 2010
  • The capacity of the carbonaceous materials reached ca. $350\;mAhg^{-1}$ which is close to theorestical value of the carbon intercalation composition $LiC_6$, resulting in a relatively low volumetric Li capacity. Notwithstanding the capacities of carbon, it will not adjust well to the need so future devices. Silicon shows the highest gravimetric capacities (up to $4000\;mAhg^{-1}$ for $Li_{21}Si_5$). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. We focused on electrode materials in the multiphase form which were composed of two metal compounds to reduce the volume change in material design. A combination of electrochemically amorphous active material in an inert matrix (Si-M) has been investigated for use as negative electrode materials in lithium ion batteries. The matrix composited of Si-M alloys system that; active material (Si)-inactive material (M) with Li; M is a transition metal that does not alloy with Li with Li such as Ti, V or Mo. We fabricated and tested a broad range of Si-M compositions. The electrodes were sputter-deposited on rough Cu foil. Electrochemical, structural, and compositional characterization was performed using various techniques. The structure of Si-M alloys was investigated using X-ray Diffractometer (XRD) and transmission electron microscopy (TEM). Surface morphologies of the electrodes are observed using a field emission scanning electron microscopy (FESEM). The electrochemical properties of the electrodes are studied using the cycling test and electrochemical impedance spectroscopy (EIS). It is found that the capacity is strongly dependent on Si content and cycle retention is also changed according to M contents. It may be beneficial to find materials with high capacity, low irreversible capacity and that do not pulverize, and that combine Si-M to improve capacity retention.

  • PDF