• Title/Summary/Keyword: built-up steel angle

Search Result 13, Processing Time 0.023 seconds

A Study on the Structural Behavior of Fabricated Columns Reinforced with Steel sheet Forms and Angles (ㄱ형강과 강판을 이용한 조립 기둥의 거동에 관한 연구)

  • Kim, Sung-Bae;Lee, Chang-Nam;Yoon, Yeong-Ho;Kim, Sang-Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.89-98
    • /
    • 2007
  • The purpose of this study is to experimentally evaluate the structural behavior of built-up type column consisted of angles and y-shape steel sheet forms for filling concrete. This column for minimizing form working and reinforcement placing is able to improve capacity of construction and reduce the term of works. Thirteen 1/3 scaled columns were fabricated. The main variables are 1) effect of angles and y-shape steel sheets of fabricated columns, 2) slenderness of column, 3) eccentricity of column. The results show that the experimental capacity of built-up type column is similar to theoretical one by reinforcement concrete design code. The maximum loads increase according to the rate of angle to cross section of column.

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator (스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증)

  • Kang, B.K.;Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.