• Title/Summary/Keyword: built-up soil

Search Result 63, Processing Time 0.025 seconds

Spatio-Temporal Monitoring of Soil CO2 Fluxes and Concentrations after Artificial CO2 Release (인위적 CO2 누출에 따른 토양 CO2 플럭스와 농도의 시공간적 모니터링)

  • Kim, Hyun-Jun;Han, Seung Hyun;Kim, Seongjun;Yun, Hyeon Min;Jun, Seong-Chun;Son, Yowhan
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.2
    • /
    • pp.93-104
    • /
    • 2017
  • CCS (Carbon Capture and Storage) is a technical process to capture $CO_2$ from industrial and energy-based sources, to transfer and sequestrate impressed $CO_2$ in geological formations, oceans, or mineral carbonates. However, potential $CO_2$ leakage exists and causes environmental problems. Thus, this study was conducted to analyze the spatial and temporal variations of $CO_2$ fluxes and concentrations after artificial $CO_2$ release. The Environmental Impact Evaluation Test Facility (EIT) was built in Eumseong, Korea in 2015. Approximately 34kg $CO_2$ /day/zone were injected at Zones 2, 3, and 4 among the total of 5 zones from October 26 to 30, 2015. $CO_2$ fluxes were measured every 30 minutes at the surface at 0m, 1.5m, 2.5m, and 10m from the $CO_2$ releasing well using LI-8100A until November 13, 2015, and $CO_2$ concentrations were measured once a day at 15cm, 30cm, and 60cm depths at every 0m, 1.5m, 2.5m, 5m, and 10m from the well using GA5000 until November 28, 2015. $CO_2$ flux at 0m from the well started increasing on the fifth day after $CO_2$ release started, and continued to increase until November 13 even though the artificial $CO_2$ release stopped. $CO_2$ fluxes measured at 2.5m, 5.0m, and 10m from the well were not significantly different with each other. On the other hand, soil $CO_2$ concentration was shown as 38.4% at 60cm depth at 0m from the well in Zone 3 on the next day after $CO_2$ release started. Soil $CO_2$ was horizontally spreaded overtime, and detected up to 5m away from the well in all zones until $CO_2$ release stopped. Also, soil $CO_2$ concentrations at 30cm and 60cm depths at 0m from the well were measured similarly as $50.6{\pm}25.4%$ and $55.3{\pm}25.6%$, respectively, followed by 30cm depth ($31.3{\pm}17.2%$) which was significantly lower than those measured at the other depths on the final day of $CO_2$ release period. Soil $CO_2$ concentrations at all depths in all zones were gradually decreased for about 1 month after $CO_2$ release stopped, but still higher than those of the first day after $CO_2$ release stared. In conclusion, the closer the distance from the well and the deeper the depth, the higher $CO_2$ fluxes and concentrations occurred. Also, long-term monitoring should be required because the leaked $CO_2$ gas can remains in the soil for a long time even if the leakage stopped.

Design Strategies for Ecological Restoration Using System Dynamics - Focused on 2015 Miryang-si Jayeon Madang Development Project - (시스템 다이내믹스를 활용한 생태복원 설계 전략 - 2015 밀양시 자연마당 조성사업을 사례로 -)

  • Ham, Eun-Kyung;Song, Ki-Hwan;Chon, Jinhyung;Cho, Dong-Gil
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.86-97
    • /
    • 2015
  • "The Jayeon Madang Development Project("JMDP")" is a project being promoted by the Ministry of Environment to create a cultural space and a natural rest area within the city. Abuksan, located at Abuksan in Gyeongsangnam-do Miryang-si Naeil-dong, has suffered a substantial amount of environmental degradation over time, so the need for ecological restoration made it a natural choice for the location of the JMDP's site. The purpose of this study is to examine ecological restoration design strategies used in Abuksan as part of the JMDP using system dynamics. The national archery center, hole, and arable land sites are key restoration areas in Abuksan that have faced with ecological problems. In this study, we identified the status of each site, determined key strategies being implemented, and designed based on the strategies implemented up to this point for solving problems associated with each sites through the use of causal loop diagrams. The results of the causal loop diagram analysis are as follows. The national archery center site was designed around strategies including planting green manure crops and introducing hugelkultur to reduce soil acidification and green network degradation. The hole site was designed as a constructed wetland based on the emergence of hygropreference vegetation, hydrated by rainwater collected at the bottom of hole, ecological and cultural benefits of such an environment. The arable land site restoration design was built around planting native vegetation on one part of the arable land site after soil quality improved and around restoration of grassland and a dry wetland on the other part of the site to reduce soil acidification, erosion, and green network degradation. This study is a significant attempt to apply principles of system dynamics to ecological restoration by providing the design strategies using comprehension of some problems in the ecosystem feedback loops, which has not been used before in general design processes for ecological restoration.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

An Experimental Study on the Bolted Connection Fatigue Capacity of Corrugated Steel Plates (파형강판 볼트 이음부의 피로성능에 관한 실험적 연구)

  • Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2014
  • Corrugated steel plate structure, which is built by assembling corrugated steel plate segments with bolts on site and filling the surroundings with quality soil, is widely used for buried structures as a eco-corridors, small bridges, and closed conduits. This experimental study is dealt with the static and fatigue performance of bolt connected corrugated steel plates under flexural loading. The experimental variables to verify the fatigue performance are bolt diameters and detailing of connection such as washer and the corrugation dimension of specimens has a $400{\times}150$ mm. The experimental ultimate strength of specimens under static loading was higher than the theoretical strength and all specimen failed by a bearing and tearing failure of bolt hole of upper plate. Therefore, a fatigue tests of specimens had 6.0mm and 7.0mm thickness was conducted in which the load range was up to 209kN and 516kN, respectively. From the fatigue test, failure patterns are changed from plate bearing and tearing which is a typical failure pattern of static failure to a bearing failure of plate and shear failure of bolt, and experimental fatigue limit at $2{\times}10^6$cycles is about 85MPa.

The Implications of Increasing Safety and Environmental Standard for Ship Operators

  • Marsh, Captain A.G.
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.137-150
    • /
    • 1996
  • Safety is built in to the activities of the prudent ship operator. Ant investment made towards this end is likely to have a measurable payback in positive terms. That there must be an investment is inevitable, because the industry at large has let things slip too far too long. Those who have not allowed it to slip too far and who are the first to recognize that safety, far from costing money, in the long term actually preserves it, will be wieners. Too many seem to have lost sight of the fact that every one hundred pennies saved is a full one hundred pennies profit. Every hundred pennies of additional revenue contributes no more then fifteen pence to profit. Environmental protection is not so simple, nor so financially attractive. Man needs the minerals of the Earth as well as the products of the soil and sea survive. We(the human race) are still not in the position, politically or financially to manage the Earth's assets without causing damage. The evidence of our damage is evident in many different parts of the Glove and will in some cases haunt several generations still to come. We have learned a lot, and continue to learn, but despite the best intentions some Government needs for their people will be at the expense of people in another region for the foreseeable future. We sailors ply the seas with the raw materials of commerce as well as the finished and part finished goods. It does not always sit well to consider too deeply what effect the ship and the cargo it carries is having, or may have, on some communities, or on the sea through which sail. None my generation can hold up his head and claim to be without blame in the pollution of the seas. Times are changing though, and Governments are turning their attention more to the protection of our planet and its precious resources. This will not be without cost. The investment will have to be made not for our benefit, but for the benefit of generations yet to come, however the cost will have to be borne by society as a whole, not by the shipping community alone. The debate surrounding the choice between engineering our way to a better tomorrow, or adapting our working practices will continue. Each method has the same goal as its target and as long as we attain the goal does it really matter how we get there?

  • PDF

Region of Interest (ROI) Selection of Land Cover Using SVM Cross Validation (SVM 교차검증을 활용한 토지피복 ROI 선정)

  • Jeong, Jong-Chul;Youn, Hyoung-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.75-85
    • /
    • 2020
  • This study examines machine learning cross-validation to utilized create ROI for classification of land cover. The study area located in Sejong and one KOMPSAT-3A image was used in this analysis: procedure on October 28, 2019. We used four bands(Red, Green, Blue, Near infra-red) for learning cross validation process. In this study, we used K-fold method in cross validation and used SVM kernel type with cross validation result. In addition, we used 4 kernels of SVM(Linear, Polynomial, RBF, Sigmoid) for supervised classification land cover map using extracted ROI. During the cross validation process, 1,813 data extracted from 3,500 data, and the most of the building, road and grass class data were removed about 60% during cross validation process. Based on this, the supervised SVM linear technique showed the highest classification accuracy of 91.77% compared to other kernel methods. The grass' producer accuracy showed 79.43% and identified a large mis-classification in forests. Depending on the results of the study, extraction ROI using cross validation may be effective in forest, water and agriculture areas, but it is deemed necessary to improve the distinction of built-up, grass and bare-soil area.

Influence of Land Use on the Pollution Load in the Saemangeum Basin (새만금 유역에서 토지 이용이 오염부하에 미치는 영향 평가)

  • Lee, Deog-Bae;Kim, Jong-Cheon;Lee, Kyung-Bo;Kim, Jong-Gu;Park, Chan-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • The SMG project has been driven to secure food and water resources by closing of the SMG dyke for the preparation of the unification of Korean peninsular. It was investigated for pollution loads, land use distribution and water consumption for environmental assessments in two watersheds, the Mankyeong River (MK) and the Dongjin River (DJ) to assess the role of agricultural land on the alleviation of pollution loads to the SMG basin. It is needed to give the priority in managing pollution sources to conserve freshwater in the Saemangeum (SMG) basin after the completion of the SMG reclamation from tideland. The MK has $700million\;m^3$ water of which 14.1% were used for living, 73.6% for agriculture and 12.3% for industry. The DJ has $505million\;m^3$ water of which 3.0% for living, 94.5% for agriculture and 2.5% for industry. As compared to proportion of each land of total area, agricultural land was 1.4 times larger, livestock farming 7 times larger, forest 0.74 times smaller, and built-up area 0.67 times smaller in DJ watershed than in MK watershed. Pollution sources in MK and DJ watersheds were originated at a higher proportion from population including the sewage disposal and a livestock farming area rather than from the land. Water consumption and land use distribution influenced the water quality of the rivers; DJ watershed had far lower value of electric conductivity, $BOD_5$, TN and TP than MK watershed. A large proportion of paddy field also influenced to reduce pollute loadings after rainfall; DJ watershed, which has a relatively large area of paddy fields, had a far lower delivery load after rainfall than MK watershed even though DJ watershed had large livestock farming area. As paddy fields was irrigated by Iksancheon water, 37% of nitrogen, 50% of phosphates and 14.0% of $BOD_5$ was removed by the paddy field just after flowing 150 meter, and rice plants could remove TN 100.0 kg, $P_2O_5$ 24.0 kg, and $K_2O$ 119.2 kg per hectare at harvest by irrigation of Iksancheon water. Conclusively, rice paddy fields played a positive role to conserve the water quality in the Iksancheon watershed.

CHANGES IN WATER USE AND MANAGEMENT OVER TIME AND SIGNIFICANCE FOR AUSTRALIA AND SOUTH-EAST ASIA

  • Knight, Michael J.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.11a
    • /
    • pp.3-31
    • /
    • 1997
  • Water has always played a significant role in the lives of people. In urbanised Rome, with its million people. sophisticated supply systems developed and then fled with the empire. only to be rediscovered later But it was the industrial Revolution commencing in the eighteenth century that ushered in major paradigm shifts In use and altitudes towards water. Rapid and concentrated urbanisation brought problems of expanded demands for drinking supplies, waste management and disease. The strategy of using water from local streams, springs and village wells collapsed under the onslaughts of rising urban demands and pollution due to poor waste disposal practices. Expanding travel (railways. and steamships) aided the spread of disease. In England. public health crises peaks, related to water-borne typhoid and the three major cholera outbreaks occurred in the late eighteenth and early nineteenth century respectively. Technological, engineering and institutional responses were successful in solving the public health problem. it is generally accepted that the putting of water into pipe networks both for a clean drinking supply, as well as using it as a transport medium for removal of human and other wastes, played a significant role in towering death rates due to waterborne diseases such as cholera and typhoid towards the end of the nineteenth century. Today, similar principles apply. A recent World Bank report Indicates that there can be upto 76% reduction in illness when major water and sanitation improvements occur in developing countries. Water management, technology and thinking in Australia were relatively stable in the twentieth century up to the mid to late 1970s. Groundwater sources were investigated and developed for towns and agriculture. Dams were built, and pipe networks extended both for supply and waste water management. The management paradigms in Australia were essentially extensions of European strategies with the minor adaptions due to climate and hydrogeology. During the 1970s and 1980s in Australia, it was realised increasingly that a knowledge of groundwater and hydrogeological processes were critical to pollution prevention, the development of sound waste management and the problems of salinity. Many millions of dollars have been both saved and generated as a consequence. This is especially in relation to domestic waste management and the disposal of aluminium refinery waste in New South Wales. Major institutional changes in public sector water management are occurring in Australia. Upheveals and change have now reached ail states in Australia with various approaches being followed. Market thinking, corporatisation, privatisation, internationalisation, downsizing and environmental pressures are all playing their role in this paradigm shift. One casualty of this turmoil is the progressive erosion of the public sector skillbase and this may become a serious issue should a public health crisis occur such as a water borne disease. Such crises have arisen over recent times. A complete rethink of the urban water cycle is going on right now in Australia both at the State and Federal level. We are on the threshold of significant change in how we use and manage water, both as a supply and a waste transporter in Urban environments especially. Substantial replacement of the pipe system will be needed in 25 to 30 years time and this will cost billions of dollars. The competition for water between imgation needs and environmental requirements in Australia and overseas will continue to be an issue in rural areas. This will be especially heightened by the rising demand for irrigation produced food as the world's population grows. Rapid urbanisation and industrialisation in the emerging S.E Asian countries are currently producing considerable demands for water management skills and Infrastructure development. This trend e expected to grow. There are also severe water shortages in the Middle East to such an extent that wars may be fought over water issues. Environmental public health crises and shortages will help drive the trends.

  • PDF

Effect of Shading Levels on the Soil Properties, Growth Characteristics, and Chlorophyll Contents of Ligularia stenocephala (차광정도가 곤달비의 토양변화, 생육상황 및 엽록소 함량에 미치는 영향)

  • Park, Byoung-Mo;Kim, Chang-Hwan;Bae, Jong-Hyang;Shin, Jung-Ryeul
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • It is true that the industrial development has usually been accompanied with urbanization or centralization of population that has inevitably led to high-rise buildings and densely built-up living area in the cities. While it is badly needed to acquire as much green land within the city limits as possible to compensate for reduced space for recreational purpose in parallel with increasingly urbanized area, the living conditions of plants have become seriously devastated due to shortage of sun light walled-off by high-rise buildings and contaminated environment and air. The shade that is generated by high-rise and compact buildings hinders growth of plants, which makes it urgent to develop native ground cover plant that is strongly viable in the shade. For this purpose, Ligularia stenocephala, best known as greens for Ssam (rice and condiments wrapped in leaves) was cultivated under the 30%, 50%, and 80% shadings and observed to see if there would be any changes in soil conditions, growth of plants and chlorophyll contents depending on the shading rate. The leaf number was 10.8 pieces under the 50% shading and 8.4 under the 30%-shading, 7.7 pieces more than that cultivated under lighting. The leaf width turned out to be excellent from cultivation under the 50%- shading, an evidence indicating its possibility of being cultivated as native ground cover plant in the shade. The live weight of the plants cultivated under the shading increased to 31.63 g, 43.39 g and 19.40 g, respectively, compared to 90.43 g of those in the untreated control plot. The increase in growth of roots was particularly significant with 48.48 g in comparison to 12.33 g under 30% shading cultivation. The chlorophyll synthesis amounted to 46.2 under the 50% shading, showing an increase compared to 41.9 under lighting. The chlorophyll synthesis rather shrank under other shading conditions. The cultivation of Ligularia stenocephala under the 50% shading showed the best condition in growth as native ground cover plant.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.