• Title/Summary/Keyword: buildingSMART International

Search Result 136, Processing Time 0.026 seconds

The Development of an Educational Robot and Scratch-based Programming

  • Lee, Young-Dae;Kang, Jeong-Jin;Lee, Kee-Young;Lee, Jun;Seo, Yongho
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.8-17
    • /
    • 2016
  • Scratch-based programming has come to be known as an effective programming tool because of its graphic instruction modules, which are designed to be assembled like the famous LEGO building blocks. These building block-like structures allow users to more easily program applications without using other more difficult programming languages such as C or Java, which are text-based. Therefore, it poses a good opportunity for application in educational settings, especially in primary schools. This paper presents an effective approach to developing an educational robot for use in elementary schools. Furthermore, we present the method for scratch programming based on the external modules need for the implementation of robot motion. Lastly, we design a systematic curriculum, titled "Play with a Robot," and propose guidelines to using the educational programming language Scratch.

Lifting Load Recording and Management Method of the Lift for Construction Based Sensing Information

  • Taekyu Ko;Joonghwan Shin;Kyuhyup Lee;Soonwook Kwon;Chung-Suk Cho;Suwan Chung;Goeun ,Choi
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.125-135
    • /
    • 2022
  • While buildings in recent days become taller and larger, many problems occur during the management of construction. Particularly, as the vertical movement of manpower and materials during construction has become longer while the lifting frequency and load increase, the need for a good lifting management practice is also increasing. Therefore, this study presents a real-time lifting performance monitoring system that can store and manage lifting records for construction management. Through review of literature and preceding studies related to construction lift, the concept of lift planning and operation management was understood, leading to the development of a system to monitor lifting operation and performance information. This system enabled quick measurement of the lifting performance during construction phase while responding to changes in the project schedule. To verify this system, a case study was conducted in which the current status and characteristics of the sensing-based lifting performance were derived.

A Case Study of Electricity Usage Monitoring for Deterioration and Economic Analysis of Main Equipment in University Laboratory

  • Park, Jun-Young;Lee, Chun-Kyong;Park, Tae-Keun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.706-707
    • /
    • 2015
  • Our country is aiming at 30% reductions in building energy consumption accounting for 39% of the total energy consumption by 2020[1]. For this purpose, the government is developing and applying the Building Energy Management System (hereinafter, referred to as "BEMS", Smart plug, etc.) while the researches on new renewable energy development. BEMS, which is applied with focus on large buildings, is inducing energy management of the entire building through energy measurement and data management, but considering its economic efficiency, it's very difficult to apply BEMS to small & medium-size buildings. Hereupon, this study intends to implement the case analysis of deterioration and economic efficiency of major equipment in buildings on the basis of electricity consumption which has been measured targeting small & medium-size buildings for a certain period by taking into account that equipment deterioration is a contributor to the increase in energy consumption.

  • PDF

Vibration control of a stay cable with a rotary electromagnetic inertial mass damper

  • Wang, Zhi Hao;Xu, Yan Wei;Gao, Hui;Chen, Zheng Qing;Xu, Kai;Zhao, Shun Bo
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.627-639
    • /
    • 2019
  • Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.

Worker Safety in Modular Construction: Investigating Accident Trends, Safety Risk Factors, and Potential Role of Smart Technologies

  • Khan, Muhammad;Mccrary, Evan;Nnaji, Chukwuma;Awolusi, Ibukun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.579-586
    • /
    • 2022
  • Modular building is a fast-growing construction method, mainly due to its ability to drastically reduce the amount of time it takes to construct a building and produce higher-quality buildings at a more consistent rate. However, while modular construction is relatively safer than traditional construction methods, workers are still exposed to hazards that lead to injuries and fatalities, and these hazards could be controlled using emerging smart technologies. Currently, limited information is available at the intersection of modular construction, safety risk, and smart safety technologies. This paper aims to investigate what aspects of modular construction are most dangerous for its workers, highlight specific risks in its processes, and propose ways to utilize smart technologies to mitigate these safety risks. Findings from the archival analysis of accident reports in Occupational Safety and Health Administration (OSHA) Fatality and Catastrophe Investigation Summaries indicate that 114 significant injuries were reported between 2002 and 2021, of which 67 were fatalities. About 72% of fatalities occurred during the installation phase, while 57% were caused by crushing and 85% of crash-related incidents were caused by jack failure/slippage. IoT-enabled wearable sensing devices, computer vision, smart safety harness, and Augment and Virtual Reality were identified as potential solutions for mitigating identified safety risks. The present study contributes to knowledge by identifying important safety trends, critical safety risk factors and proposing practical emerging methods for controlling these risks.

  • PDF

Operation of Smart Refrigeration Logistics Center based on Cold Chain System

  • Cho, Gyu-Sung
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.229-234
    • /
    • 2018
  • This paper focuses on the frozen storage warehouse located in Busan area, and it is because Busan is the most dense area in Korea. Busan is a port city, and almost all of the frozen refrigerated cargo imported from abroad is concentrated. By taking advantage of its strength as a fishery industry as well as importing, Busan is building the largest international fishery logistics base in Northeast Asia and plays an important role in the export of refrigerated cargo is. Therefore, although the freezing and chilling facilities seem to be developed with the latest technology, the reality is not so. Most of them are functioning as a warehouse, that is, a storage function, and a considerable number of refrigerated warehouses are in a state of aging. Therefore, in this paper, the facility and function restructuring of the freezing storage warehouse have been set as a solution task, and the introduction of the cold chain system containing the latest smart technology has been proposed as a solution.

Performance Comparison of HTTP, HTTPS, and MQTT for IoT Applications

  • Sukjun Hong;Jinkyu Kang;Soonchul Kwon
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • Recently, IoT technology has been widely used in many industries. Also research on integrating IoT technology with IoT sensors is actively underway. One of the important challenges in IoT is to support low-latency communication. With the development of communication networks and protocols, a variety of protocols are being used, and their performance is improving. In this paper, we compare the performance and analyze the characteristics of some of the major communication protocols in IoT application, namely MQTT, HTTP, and HTTPS. IoT sensors acquired data by connecting an Arduino equipped with ESP8266 and a temperature and humidity sensor (DHT11). The server measured the performance by building servers for each protocol using AWS EC2. We analyzed the packets transmitted between the Arduino and the server during the data transmission. We measured the amount of data and transfer time. The measurement results showed that MQTT had the lowest data transmission time and data amount among the three protocols.

Fabricator based on B+Tree for Metadata Management in Distributed Environment

  • Chae-Yeon Yun;Seok-Jae Moon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.125-134
    • /
    • 2024
  • In a distributed environment, data fabric refers to the technology and architecture that provides data management, integration, and access in a consistent and unified manner. To build a data fabric, it is necessary to maintain data consistency, establish a data governance system, reduce structural differences between data sources, and provide a unified view. In this paper, we propose the Fabricator system, a technology that provides data management and access in a consistent and unified manner by building a metadata registry. Fabricator manages the addition and modification of metadata schemas and matching processes by designing a matching tool called MetaSB Manager that applies B+Tree. This allows real-time integration of various data sources in a distributed environment, maximizing the flexibility and usability of data.

A Study on Current State in Stitches and Seams Usage for Building Smart Sewing Systems: Focused on Sewing Specification of Cut and Sewn Knit (스마트 봉제 시스템 구축을 위한 스티치 및 솔기 사용 현황에 관한 고찰: 컷 앤 쏘운 니트 의류 봉제사양서를 중심으로)

  • Lee, Suyeon;Ha, Hee Jung
    • Human Ecology Research
    • /
    • v.58 no.3
    • /
    • pp.357-374
    • /
    • 2020
  • This study suggests the use of standardized sewing terms for the construction of smart sewing systems. This study analyzed the use of stitches (ISO 4915) and seams (ISO 4916) for cut and sewn knit garment which are the basic elements of sewing on an ISO basis. The results of the analysis of sewing specifications of cut and sewn knit garments are as follows. First, the use of stitches and seams were analyzed. As a result, both stitches and seams were used as non-standard terms. Second, among 3,263 stitches, ISO 4915 No. 406 followed by 401, 504, 605 were the most frequently used; however, ISO 4915 No. 514 was anticipated the most because the ISO 4915 No. 514 used for joining was not recorded in the sewing specification. Finally, the use of stitch for each seam was analyzed. The most common stitch used for ISO 4916 No. 6.02.07 was ISO 4915 No. 406. In addition, when it was sewing ISO 4916 No. 4.04.01, ISO 4915 No. 504 was used in step 1, and ISO 4915 No. 406, 602, and 605 were used in step 2. It is important to use the international standard sewing terms for the production site based on the results. In addition, the construction of smart sewing systems and the work of international standardization through industry-university cooperation are important for securing global competitiveness. Therefore, the use of international standard terminology and practical training should be conducted with a focus on stitching and seams with high frequency of use.

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment (고진공 및 극저온 달의 지상 환경 재현을 위한 지반열진공챔버 운영 효율성 평가)

  • Jin, Hyunwoo;Chung, Taeil;Lee, Jangguen;Shin, Hyu-Soung;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.125-134
    • /
    • 2022
  • The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.