• Title/Summary/Keyword: building surface design

Search Result 359, Processing Time 0.029 seconds

Generation of Unit Shape Layer on CAD/CAM System for VLM-ST (VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

Optimization of Mixing Proportion of Press-forming Board by Response Surface Methodology (반응표면분석법을 이용한 가압성형 보드의 최적 배합비 산정)

  • Lee, Jun-Cheol;Kim, Jin-Sung;Lee, Bo-kyeong;Choi, Hyeong-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.182-183
    • /
    • 2019
  • In this study, the optimization of mixing proportion of press-forming board with blast furnace slag, pearlite and bottom ash was investigated using the response surface methodology. Ten Mixing proportions of specimens were designed by the response surface design, and then flexural failure load, moisture content and water absorption of specimens were measured. As a result of the reaction surface analysis based on the experimental results, it was possible to derive the optimal mixing proportion with the satisfaction of 93%.

  • PDF

Comparative Analysis of Fire Resistance in Glued Laminated Timber: The Impact of Adhesives and Surface Direction (구조용 집성재의 접착제 종류 및 접착면 방향성에 따른 내화성능 비교 분석)

  • Choi, Yun-Jeong;An, Jae-Hong;Baik, Kwon-hyuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.761-772
    • /
    • 2023
  • The fire resistance design of timber structures involves calculating the residual section based on charring depth, which is then utilized in structural design. Charring depth is determined from fire-resistance test results in Korea, which currently do not account for the charring properties of the adhesive used in Glued Laminated Timber(GLT) production. This study fabricated GLT using various adhesives employed in domestic GLT production, comparing the charring properties by adhesive type and the fire resistance performance relative to the directionality of the laminated surface. Melamine demonstrated the most advantageous fire resistance performance, followed by resorcinol and polyurethane. Furthermore, it was established that the laminated section exhibited a higher charring rate, influenced by the adhesive, compared to the laminated surface, which significantly impacts the fire resistance performance.

Foundation Design the 151 story Incheon Tower in Reclamation Area

  • Abdelrazaq, Ahmad;Badelow, Frances;Kim, Sung-Ho;Park, Yung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.157-171
    • /
    • 2009
  • A 151 storey super high-rise building located in an area of reclaimed land constructed over soft marine clay in Songdo, Korea is currently under design. This paper describes the design process of the foundation system of the supertall tower, which is required to support the large building vertical and lateral loads and to restrain the horizontal displacement due to wind and seismic forces. The behaviour of the foundation system due to these loads and foundation stiffness influence the design of the building super structure, displacement of the tower, as well as the raft foundation design. Therefore, the design takes in account the interactions between soil, foundation and super structure, so as to achieve a safe and efficient building performance. The site lies entirely within an area of reclamation underlain by up to 20m of soft to firm marine silty clay, which overlies residual soil and a profile of weathered rock. The nature of the foundation rock materials are highly complex and are interpreted as possible roof pendant metamorphic rocks, which within about 50m from the surface have been affected by weathering which has reduced their strength. The presence of closely spaced joints, sheared and crushed zones within the rock has resulted in deeper areas of weathering of over 80m present within the building footprint. The foundation design process described includes the initial stages of geotechnical site characterization using the results of investigation boreholes and geotechnical parameter selection, and a series of detailed two- and three-dimensional numerical analysis for the Tower foundation comprising over 172 bored piles of varying length. The effect of the overall foundation stiffness and rotation under wind and seismic load is also discussed since the foundation rotation has a direct impact on the overall displacement of the tower.

  • PDF

Computational Soil-Structure Interaction Design via Inverse Problem Formulation for Cone Models

  • Takewaki, Izuru;Fujimoto, Hiroshi;Uetani, Koji
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A computationally efficient stiffness design method for building structures is proposed in which dynamic soil-structure interaction based on the wave-propagation theory is taken into account. A sway-rocking shear building model with appropriate ground impedances derived from the cone models due to Meek and Wolf (1994) is used as a simplified design model. Two representative models, i.e. a structure on a homogeneous half-space ground and a structure on a soil layer on rigid rock, are considered. Super-structure stiffness satisfying a desired stiffness performance condition are determined via an inverse problem formulation for a prescribed ground-surface response spectrum. It is shown through a simple yet reasonably accurate model that the ground conditions, e.g. homogeneous half-space or soil layer on rigid rock (frequency-dependence of impedance functions), ground properties (shear wave velocity), depth of surface ground, have extensive influence on the super-structure design.

  • PDF

Construction of Insulator and Isolator Database by Using Response Surface Model based on Taguchi's Orthogonal Array (다구찌 직교배열의 반응표면모델에 의한 흡차음재 소재 DB 구축)

  • Lee, Kwang-Ki;Kim, Byung-Hoon;Jun, In-Ki;Kang, Kyung-Soon;Kim, Ok-Bin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.619-624
    • /
    • 2000
  • Design of experiments based on Taguchi's orthogonal array is utilized for exploring the design space and for building response surface models of insulator and isolator database in order to facilitate the effective solution of multi-objective optimization commonly occurred in NVH problems. Response surface models, called engineering database of design space, provide an efficient means to rapidly model the trade-off among many conflicting NVH goals in automotive. In the design of insulator and isolator in automotive interior part, it is important not only to construct effective matrices of NVH but also to build up engineering database of current products. The experimental design especially based on orthogonal array and the nonlinear optimization algorithms are successfully used together to obtain the optimal design of insulator and isolator. The $2^{nd}$ order response surface models of absorption coefficient and insertion loss are constructed by using modified Taguchi's $L_{12}2^13^7$ orthogonal array and successfully used in optimal design of insulator and isolator.

  • PDF

Study on Changes of Physical Expression in Interior and Exterior Surfaces in Contemporary Architecture (현대건축물 표피의 내.외부 공간 표현성 변화에 관한 연구)

  • Lee, Yil-Pyo;Park, Hyeon-Soo
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2006.05a
    • /
    • pp.131-134
    • /
    • 2006
  • This study aims to inspect changes of physical expression in surfaces of both building interior and exterior in contemporary architecture. Nowadays society has transformed into more complicated framework with the development of the new media and digital technology in 21 century. Surface's expressivity has been changed with design trend and material development. Although surface study has been mainly concentrated on properties of materials and structure characters, new technology and cultural acceptance enables it extend itself to a new area with various design methods, taking its place as an important contemporary architectural element. Interior surface design is expressed with several unique methods such as optical illusion, surface exposure and spacial depth and volume, and it created dynamic space within the surface itself. In case of exterior surface, whole space seems to be designed to be coordinated with structured optical illusion as well as symbolic expression. Surface's area is extends itself with the stream of the times. This study explored the nature of surfaces with categorizing and comparing them in a various views and methods.

  • PDF

An Effective Algorithm for Transmitted Solar Radiation Calculation through Window Glazing on a Clear Day

  • Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • The main objective of this study is to provide an effective algorithm of the transmitted solar radiation calculation through window glazing on a clear day. This algorithm would be used in developing a computer program for fenestration system analysis and shading device design. Various simulation methods have been evaluated to figure out the most accurate and effective procedure in estimation of transmitted solar radiation on a tilted surface on a clear day. Characteristics of simulated results of each step have been scrutinized by comparing them with measured results of the site as well as results from other simulation programs. Generally, the Duffie & Beckman's solar calculation method introducing the HDKR anisotropic model provided the most reliable simulation results. The DOE-2 program usually provided over-estimated simulation results. The estimation of extraterrestrial solar radiation and beam normal radiation were conducted pretty accurately. However, the solar radiation either on horizontal surface or on tilted surface involves complicated factors in estimation. Even though the estimation results were close to the real measured data during summer when solar intensity is getting higher, the estimation provided more error when solar intensities were getting weaker. The convex polygon clipping algorithm with homogeneous coordinates was fastest model in calculation of sunlight to shaded area ratio. It could not be applied because of its shape limitation.

Investigation of the effects due to a permeable double skin façade on the overall aerodynamics of a high-rise building

  • Pomaranzi, Giulia;Pasqualotto, Giada;Zassso, Alberto
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.213-227
    • /
    • 2022
  • The design of a building is a complex process that encompasses different fields: one of the most relevant is nowadays the energetic one, which has led to the introduction of new typologies of building envelopes. Among them, the Permeable Double Skin Façades (PDSF) are capable to reduce the solar impact and so to improve the energetic performances of the building. However, the aerodynamic characterization of a building with a PDSF is still little investigated in the current literature. The present paper proposes an experimental study to highlight the modifications induced by the outer porous façade in the aerodynamics of a building. A dedicated wind tunnel study is conducted on a rigid model of a prismatic high-rise building, where different façade configurations are tested. Specifically, the single-layer façade is compared to two PDSFs, the former realized with perforated metal and the latter with expanded metal. Outcomes of the tests allow estimating the cladding loads for all the configurations, quantifying the shielding effects ascribable to the porous layers that are translated in a significant reduction of the design pressure that could be up to 50%. Moreover, the impact of the PDSFs on the vortex shedding is investigated, suggesting the capability of the façade to suppress the generation of synchronised vortices and so mitigate the structural response of the building.

An Analysis of Fashion Designs Based on the Laws of the Screen Equivalent of Impressionist Paintings (인상주의 회화의 화면등가의 법칙에 기반 한 패션디자인 연구)

  • Lee, Shin-Young
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.514-522
    • /
    • 2013
  • This study reviews the principles for the techniques of Impressionist paintings as well as analyzed contemporary fashion designs with a focus on a motif-building technique based on the laws of a screen equivalent as a visual formative approach. We provide design principles based on fashion design painting techniques. Previous research on the laws of the screen equivalent of Impressionist paintings were studied and a qualitative analysis was conducted on fashion design cases from 2011, 2012 S/S and F/W collections. The analysis resulted in the following outcomes. First, the development of new motifs were found directly correlated to the creativity of design if it was a motif-building design. Second, in the selected fashion design cases, cutting lines and details were covered by motifs and their shapes collapsed in regards to overall visual uniformity so that specific details were hard to identify. Third, clothing shapes are recognized the changing colors of motifs and not through construction pattern lines; therefore, the expressions of diverse visual forms were available without being disturbed by construction pattern lines. This is deemed equivalent to an Impressionist painting style that depicts shapes with colors instead of lines. Lastly, the cases covered in this study have created new visual aspects that replace the stereoscopic spatial depth of clothes with a 'sensuous surface'. The pleasures derived from the sensuous surface are deemed equivalent to the visual pleasures created by Impressionist paintings.