• Title/Summary/Keyword: building structural systems

Search Result 666, Processing Time 0.025 seconds

An Overview of Structural and Aesthetic Developments in Tall Buildings Using Exterior Bracing and Diagrid Systems

  • Al-Kodmany, Kheir;Ali, Mir M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.271-291
    • /
    • 2016
  • There is much architectural and engineering literature which discusses the virtues of exterior bracing and diagrid systems in regards to sustainability - two systems which generally reduce building materials, enhance structural performance, and decrease overall construction cost. By surveying past, present as well as possible future towers, this paper examines another attribute of these structural systems - the blend of structural functionality and aesthetics. Given the external nature of these structural systems, diagrids and exterior bracings can visually communicate the inherent structural logic of a building while also serving as a medium for artistic effect. Viewed in this light, the visual appeal of these systems can be enhanced to give a tower a more distinct urban identity. This entails the creation of structural elements that are aesthetically pleasing, geometrically coherent and that demonstrate dexterity of application in regards to a building's composition, while also respecting the laws of physics and mechanics. In this fashion, an artistic approach can exhibit structural systems as not just purely rational features that enable the construction of tall buildings, but as important visual components that afford opportunities for creative expression. This paper, therefore, synthesizes the concepts of structural performance and creative artistry to facilitate a better understanding of the aesthetic developments in skyscrapers worldwide.

Structural Cost Optimization for Building Frame System Using High-Strength Steel Members (고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화)

  • Choi Sang-Hyun;Kwon Bong-Keun;Kim Sang-Bum;Seo Ji-Hyun;Kwon Yun-Han;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF

Lightweight Floor Systems for Tall Buildings: A Comparative Analysis of Structural Material Efficiencies

  • Piyush Khairnar
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • Typical floor systems in contemporary tall buildings consist of reinforced concrete or composite metal deck over framing members and account for a majority of the structural weight of the building. The use of high-density materials, such as reinforced concrete and steel, increases the weight of floor systems, reducing the system's overall efficiency. With the introduction of high-performance materials, mainly mass timber products, and fiber-reinforced composites, in the construction industry, designers and engineers have multiple options to choose from when selecting structural materials. This paper discusses the application of mass timber and carbon fiber composites as structural materials in floor systems of tall buildings. The research focused on a comparative analysis of the structural system efficiency for five different design options for tall building floor systems. Finite Element Analysis (FEA) method was adopted to develop a simulation framework, and parametric structural models were simulated to evaluate the structural performance under specific loading conditions. Simulation results revealed the advantages of lightweight structural materials to improve system efficiency and reduce material consumption. The impact of mechanical properties of materials, loading conditions, and issues related to fire engineering and construction were briefly discussed, and future research topics were identified in conclusion.

The Preliminary Design Guideline for Tall Building: Exploration of Planning Factors & Building Factors

  • Choi, Yong Sun
    • Architectural research
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Every year new tall buildings are being conceived, designed, and built with new schemes. Thus it is important to explore the factors that affect tall building design. Thus it is important to explore the tall building design factors. The planning and design of tall buildings require different criteria than those that exist in regular size buildings. Tall buildings are uniquely expressed by their structural systems where exterior esthetic and requirements of space drive the form and composition of the structural systems. Therefore the exploration of design factors is the key to achieve optimum building systems. Optimization as mentioned here is associated with the efficiency of the different building systems. To achieve an optimal system, there is a need for an understanding of the factors that affect on overall tall building design such as planning module, building function, lease span, floor-to-floor-height, building height (aspect ratio), structural system, environmental systems. In this paper a statistical approach will be used and will be based on data collected from the practice through a rigorous survey taken. This information is tabulated and analyzed. The major target of investigation will be lease span related to space requirement in the tall building planning. Factors related to lease spans, such as function, floor-to-floor height, planning module, building height, overall plan dimension, and plan ratio (building geometry), will be looked at carefully. IN conclusion, this approach of optimization can introduce a preliminary design guideline for tall building projects. The purpose of the paper should shed some light on the optimum tall building design criteria.

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.

A Whole LCA of the Sustainable Aspects of Structural Systems in Tall Buildings

  • Trabucco, Dario;Wood, Antony;Vassart, Olivier;Popa, Nicoletta
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.71-86
    • /
    • 2016
  • This paper summarizes the results of a two-year-long research project conducted by the CTBUH on the life cycle assessment (LCA) of tall building structural systems. The research project was made possible thanks to a $300,000 contribution from ArcelorMittal and the support of some of the most important structural engineering firms and players in the tall building industry. The research analyzed all life phases of a tall building's structural system: the extraction and production of its materials, transportation to the site, construction operations, final demolition of the building, and the end-of-life of the materials. The impact of the building structure during the operational phase (i.e., impact on daily energy consumption, maintenance, and suitability to changes) was also investigated, but no significant impacts were identified during this phase.

Dynamic Interrelationship between the Evolution of Structural Systems and Façade Design in Tall Buildings: From the Home Insurance Building in Chicago to the Present

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The emergence of tall buildings in the late $19^{th}$ century was possible by using new materials and separating the role of structures and that of non-structural walls from the traditional load-bearing walls that acted as both. The role of structures is more important in tall buildings than in any other building type due to the "premium for height". Among the walls freed from their structural roles, façades are of conspicuous importance as building identifiers, significant definers of building aesthetics, and environmental mediators. This paper studies dynamic interrelationship between the evolution of tall building structural systems and façade design, beginning from the early tall buildings of skeletal structures with primitive curtainwalls to the recent supertall buildings of various tubular and outrigger structures with more advanced contemporary curtainwalls.

Evaluation of seismic performance factors for steel DIAGRID structural system design

  • Lee, Dongkyu;Shin, Soomi;Ju, Youngkyu
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.735-755
    • /
    • 2016
  • This article presents a proposed analytical methodology to determine seismic force-resisting system R-values for steel diagrid framed systems. As current model building codes do not explicitly address the seismic design performance factors for this new and emerging structural system, the purpose of this study is to provide a sound and reliable basis for defining such seismic design parameters. An approach and methodology for the reliable determination of seismic performance factors for use in the design of steel diagrid framed structural systems is proposed. The recommended methodology is based on current state-of-the-art and state-of-the practice methods including structural nonlinear dynamic analysis techniques, testing data requirements, building code design procedures and earthquake ground motion characterization. In determining appropriate seismic performance factors (R, ${\Omega}_O$, $C_d$) for new archetypical building structural systems, the methodology defines acceptably low values of probability against collapse under maximum considered earthquake ground shaking.

The Evolution of Outrigger System in Tall Buildings

  • Ho, Goman W.M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • The structural efficiency of tall buildings heavily depends on the lateral stiffness and resistance capacity. Among those structural systems for tall buildings, outrigger system is one of the most common and efficient systems especially for those with relatively regular floor plan. The use of outriggers in building structures can be traced back from early 50 from the concept of deep beams. With the rise of building height, deep beams become concrete walls or now in a form of at least one story high steel truss type of outriggers. Because of the widened choice in material to be adopted in outriggers, the form and even the objective of using outrigger system is also changing. In the past, outrigger systems is only used to provide additional stiffness to reduce drift and deflection. New applications for outrigger systems now move to provide additional damping to reduce wind load and acceleration, and also could be used as structural fuse to protect the building under a severe earthquake condition. Besides analysis and member design, construction issue of outrigger systems is somehow cannot be separated. Axial shortening effect between core and perimeter structure is unavoidable. This paper presents a state-of-the-art review on the outrigger system in tall buildings including development history and applications of outrigger systems in tall buildings. The concept of outrigger system, optimum topology, and design and construction consideration will also be discussed and presented.

Evaluation of 2 Part Curtainwall Structural Silicone Sealant (커튼월용 2액형 구조용 실란트 혼합비별 물성 평가 연구)

  • Kim, Sung Hyun;Jung, Jin-young;Ahn, Myung-Su;Seo, YeonWon;Bae, Keesun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.78-80
    • /
    • 2014
  • Silicone structural glazing (SSG) is a method utilizing a silicone adhesive to attach glass, metal, or other panel material to the structure of a building. Windload and other impact loads on the facade are transferred from the glass or panel through the silicone structural sealant to the systems' framework. Silicone structural glazing systems are currently a very common method of glazing throughout the world. Locally, structural silicone glazing has become very common to achieve aesthetically pleasing and high utilization of small land for both residential and commercial building. Although structural silicone glazing has been utilized for approximately thirty years in Korea, the understanding of its technology was low and limited. Consequently, Korean projects experienced many quality issues during assembly and construction, even in very recently finished buildings. Adhesion loss and water infiltration occurred on more than one project, and the time and cost to repair these issues were substantial. In general, there are two kinds of structural silicones depending on fabrication methods. 1part structural silicone is for site glazing system and 2part structural silicone is for unitized factory glazing system. In this paper, 2part structural silicone which is very common for factory fabricating curtainwall systems was evaluated with regards to various mixing ratio. Since the structural performance of 2part sealant can be affected by mixing ratios, some extra ranges of recommended mixing ratio were evaluated to see any performance differences. Besides on cure profile, comparative evaluations for mechanical properties and adhesion develop on common building substrates were conducted.

  • PDF