• Title/Summary/Keyword: building energy demand

Search Result 345, Processing Time 0.027 seconds

Comparing Methodology of Building Energy Analysis - Comparative Analysis from steady-state simulation to data-driven Analysis - (건물에너지 분석 방법론 비교 - Steady-state simulation에서부터 Data-driven 방법론의 비교 분석 -)

  • Cho, Sooyoun;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2017
  • Purpose: Because of the growing concern over fossil fuel use and increasing demand for greenhouse gas emission reduction since the 1990s, the building energy analysis field has produced various types of methods, which are being applied more often and broadly than ever. A lot of research products have been actively proposed in the area of the building energy simulation for over 50 years around the world. However, in the last 20 years, there have been only a few research cases where the trend of building energy analysis is examined, estimated or compared. This research aims to investigate a trend of the building energy analysis by focusing on methodology and characteristics of each method. Method: The research papers addressing the building energy analysis are classified into two types of method: engineering analysis and algorithm estimation. Especially, EPG(Energy Performance Gap), which is the limit both for the existing engineering method and the single algorithm-based estimation method, results from comparing data of two different levels- in other words, real time data and simulation data. Result: When one or more ensemble algorithms are used, more accurate estimations of energy consumption and performance are produced, and thereby improving the problem of energy performance gap.

Energy and Economic Analysis of Heat Recovery Cogeneration Loop Integrated with Heat Pump System by Detailed Building Energy Simulation (건물 에너지 상세 해석을 통한 소형 열병합 발전 및 히트펌프 복합 시스템의 경제성 분석)

  • Seo, Dong-Hyun;Koh, Jae-Yoon;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • Up until recently, the energy and the economic analysis of a cogeneration system have been implemented by a manual calculation that is based on monthly thermal loads of buildings. In this study, a cogeneration system modeling validation with a detail building energy simulation, eQUEST, for a building energy and cost prediction has been implemented. By analyzing the hourly building electricity and thermal loads, it enables users to decide proper cogeneration system capacity and to estimate more accurate building energy consumption. eQUEST also verified the energy analysis when the heat pump system is integrated with the cogeneration system. The mechanical system configuration benefits from the high efficiency heat pump system while avoiding the building electricity demand increase. Economic analysis such as LCC (Life Cycle Cost) method is carried out to verify economical benefits of the system by applying actual utility rates of KEPCO(Korea Electricity Power COmpany) and KOGAS(KOrea GAS company).

Parametric Analysis of Building Energy Impact of Semi-transparent PV (STPV의 건물 에너지 성능에 대한 파라메트릭 분석)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.35-42
    • /
    • 2018
  • Semi-transparent Photovoltaics (STPV) works as an exterior material replacing windows as well as functioning as a electricity generator. As a result, it also affects the building's heating, cooling and lighting loads. In this study, we used the concept of Net Electricity Benefit(NEB) to conduct a parametric analysis of building energy impact of STPV. The NEB of STPV is from $-1kWh/m^2$ to $6kWh/m^2$. Since NEB represents the amount of energy increase or decrease when STPV is applied compared to the standard window, a value of 0 or less means that the demand for building energy can be increased rather than applying a general window having high thermal performance and high visible light transmittance value. Therefore, it is necessary to perform a comprehensive performance evaluation considering both the performance evaluation based on the existing power generation performance and the influence on the building energy.

Case Study for Energy Conservation Measures of Hospital Buildings Using the Analysis of Energy Consumption Structure (의료시설 에너지절약 운영방법 도출을 위한 사례분석을 통한 에너지 영향요소 분석)

  • Lee, Sangmoon;Cho, Jinkyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.57-69
    • /
    • 2019
  • Because the hospital building operates 24 hours a day, 365 days a year for treatment and restoration of patients, it has a different pattern of energy use than that of ordinary buildings. Hospitals contribute to energy consumption and have a negative environmental impact. This study aims to find how meaningful energy performance, reflecting good energy management and ECMs, can be operated for hospital buildings, a category encompassing complex buildings with different systems and large differences between them. In this study, we proposed the energy diagnosis & evaluation method and energy management process to verify energy saving through operation data based on system & facility characteristics, operation pattern and energy consumption characteristics of hospital building. Energy consumption structures were surveyed throughout 4 reference hospital in Seoul, Korea. Findings confirm that different hospital departments have hugely different energy-demand profiles. Energy efficiency and energy saving potentials are presented. The energy performance analysis can be applied to a wide range of problems in energy-system operation.

Development of a Building Energy Demand Estimator (건물 단지에 대한 에너지 수요 예측 프로그램 개발)

  • Chung, Mo;Park, Hwa-Choon;Im, Yong-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.127-132
    • /
    • 2009
  • A Microsoft Access application program is developed to calculate energy demands for a Community Energy System (CES) composed of various types of buildings. The field-measured heating, hot water, cooling, and electricity energy consumptions for 14 types of building are systematically organized in forms of database and hourly loads for a span of year (8760 hours) are generated through an automated statistical procedure. User-friendly standard windows interfaces are provided to assist non-expert end users.

  • PDF

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.

The Technology Applied 3 Liter House, Super Energy Saving Building (3L House의 설계, 시공 및 평가)

  • Park, Sun-Hyo;Park, Yong-Seung;Won, Jong-Seo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.814-819
    • /
    • 2006
  • This research is on the design and introducing of integrated thermal performance of super energy saying building, called 3 Liter house which can be sustained with 3 liter oil(kerosene) per $yr.m^2$. 3 liter houses(Passive houses) offer extended living comfort with only 15 to 20% of the space heating demand of conventional new building. To achieve this purpose, the efficiency of building components is improved, such as walls, windows or ventilation system and the construction technology is improved, such as the prevention of thermal bridge and the air tightness. The fuel cell is used as alternative energy. Energy consumption of 3L house is 2.08 [liter/$yr.m^2$] in monitoring result of $2006/2/1{\sim}2/7$ and ACH50 is 0.67 in result of Blow Door Test, therefore 3L House is well- insulated and well- airtighted house.

  • PDF

Study on the Feasibility Test of Renewable Energy Systems for Schools (학교 건물의 신재생에너지 적용을 위한 수요/공급 분석 및 평가에 관한 연구)

  • Nam, Hyun-Jin;Park, Eun-Mi;Pae, Min-Ho;Kim, Jae-Min;Park, Hyo-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.197-204
    • /
    • 2010
  • Schools are one of the most suitable buildings for renewable energy systems because they have favourable demand profiles for renewable energy system (e.g. solar thermal collector, photovoltaic panels), modular-based building plan and large open spaces (e.g. play ground, gardens, roof) for the installation. This paper presents a methodology of the feasibility test for renewable energy systems to be installed at schools. The methodology is based on the analysis of the demand/supply profiles dynamic matching. a case study is also presented to test the applicability of the proposed assessment methodology.

Comparative Analysis of Energy Performance using Dynamic Simulation (동적 시뮬레이션을 이용한 건물 에너지 성능 비교분석)

  • Bae, Sangmu;Lee, Kyung-Hee;Yeo, Seong-Gu;Kim, Eunji;Yang, Jae-Kwang;Jeon, Jae-Young;Lee, Joonhyuk;Bae, Yeongmin;Kim, Sung-Hoon;Kang, Youngmo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.62-67
    • /
    • 2017
  • In order to achieve high efficiency of energy use and environment-friendly architectural design, various loads such as cooling, heating and hot water required by the building sector must be accurately predicted. Many studies used dynamic simulation tool to evaluate and analyze building energy performance. However, there are few studies on the comparative analysis of load results by each simulation and the evaluation of simulation characteristics and functions. In this study, the cooling, heating loads and energy demand of the buildings were evaluated using three dynamic simulations for the building with the same input conditions, and the characteristics of each simulation were compared and analyzed through the results. As a result of simulation comparative analysis, cooling, heating load and energy demand was lowest in square type and north-south direction conditions.

A Study on the Effective M&V Method for the Lighting Control System (조명제어시스템을 위한 효율적인 계측 및 검증(M&V) 기법 연구)

  • Kim, Jeong-Uk;Boo, Chang-Jin;Kim, Jeong-Hyuk;Oh, Seong-Bo;Kim, Ho-Chan
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.216-223
    • /
    • 2011
  • This paper presents an effective energy saving algorithm for lighting control systems using M&V method in various buildings and factories. It is important to aggregate a various demand side resource which is controllable at the peak power time to reduce the energy cost. Previous demand side algorithm appropriate for building is based on peak power. In this paper, we develop the new energy saving algorithm using M&V method to reduce the quantity of power consumption. The simulation results show that the proposed method is very effective.