• Title/Summary/Keyword: building energy demand

Search Result 345, Processing Time 0.038 seconds

A Study on the Design Method of Zero Energy Building considering Energy Demand and Energy Generation by Region (지역별 에너지 소요량과 생산량을 반영한 제로에너지건축물의 설계 방안에 관한 연구)

  • Lee, Soon-Myung;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.8
    • /
    • pp.13-22
    • /
    • 2018
  • The purpose of this study was to consider the energy generation of the building as well as the energy demand of the building in terms of zero energy building design. The reason why the zero energy building viewpoint should be discussed is that direction of the building, heat transfer rate of the building, and the S/V ratio of the building are variables related to energy demand and solar panels installed on the building roof and building envelope are variables related to energy generation. This study proceeded as follows; Firstly, the simulation model of large office and elementary school has the same mutual volume and total floor area, and the each floor area and number of floors are adjusted so that the S/V ratio is different. To the next, the energy demand and energy generation of the simulation model were derived based on the meteorological data of Seoul, Daejeon, Busan. Finally, energy demand, energy generation, and final energy demand were compared with heat transfer rate, S/V ratio, building type, region, and orientation. The results of this study is that consideration of solar power generation in terms of energy generation should be taken into consideration at the same time in consideration of the heat transfer rate, the shape, the region and the direction of the zero energy building design.

Building AHU Load Control Algorithm based on Demand Response (DR 기반의 건물 공조 부하관리 알고리즘)

  • Kim, Jeong-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1225-1228
    • /
    • 2011
  • This paper presents an advanced energy saving algorithm in building. It is important to aggregate a various demand side resource which is controllable on demand response environment. Previous demand side algorithm for building is restricted on peak power. In this paper, we suggest duty cycle algorithm for AHU on demand response to reduce the quantity of building power consumption. The test results show that the proposed algorithm is very effective.

Energy Demand Management Algoritm for Buildings and Application Procedure (건물군 에너지 수요관리 알고리즘 및 적용 절차)

  • Kim, Jeong-Uk
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • This paper presents an advanced energy demand management for buildings. It is important to aggregate a various demand side resource which is controllable on demand response environment. Previous demand side algorithm for building is mostly restricted on single building. In this paper, we suggest energy demand management algorithm for many buildings. And, this paper shows the procedure to apply suggested demand management algorithm.

Comparison of Energy Demand Characteristics for Hotel, Hospital, and Office Buildings in Korea (호텔, 병원, 업무용 건물의 에너지 부하 특성 비교)

  • Park, Hwa-Choon;Chung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.553-558
    • /
    • 2009
  • Energy demand characteristics of hotel, hospital, and office building are compared to provide guidelines for combining building in community energy system design. The annual, monthly, and daily energy demand patterns for electricity, heating, hot water and cooling are qualitatively compared and important features are delineated based on the energy demand models. Key statistical values such as the mean, the maximum are also provided. Important features of the hourly demand patterns are summarized for weekdays and weekends. Substantial variations in both magnitudes and patterns are observed among the 3 building types and smart grouping or combination of building type and size is essential for a successive energy supply.

A Study on the Methodology of Building Energy Consumption Estimation and Energy Independence Rate for Zero Energy City Planning Phase (제로에너지시티 계획을 위한 건물에너지 수요 예측 방법론 개발 및 자립률 산정에 대한 연구)

  • Bae, Eun-ji;Yoon, Yong Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.29-40
    • /
    • 2019
  • In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.

A Study on Analysis for Energy Demand of the Heating, Cooling and Lighting in Office Building with Transparent Thin-film a-Si BIPV Window (투광형 박막 BIPV 창호 적용에 따른 냉난방 및 조명 부하 저감에 관한 연구)

  • Yoon, Jong-Ho;An, Young-Sub;Park, Jang-Woo;Kim, Bit-Na
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.91-96
    • /
    • 2013
  • The purpose of this study was to analyze the annual energy demand including heating, cooling and lighting according to kind of windows with transparent thin-film a-Si Building Integrated Photovoltaic(a-Si BIPV) for office building. The analysis results of the annual energy demand indicated that the a-si BIPV window was reduced by 8.4% than the clear gazing window. The base model A was combinate with a-Si BIPV window area of 67% and clear window area of 33% among the total exterior area. The model B is to be applied with low-e clear glass instead of clear glass of the base model A. The model B was reduced to annual energy demand of 1% more than the model A. Therefore, By using a-si BIPV solar module, the cooling energy demand can be reduced by 53%(3.4MWh) and the heating energy demand can be increase by 58%(2.4MWh) than clear glazing window in office building. Also, Model C applied to the high efficient lighting device to the model B was reduced to annual energy demand of 14.4% more than the Model D applied to the high efficient lighting device to the model A. The Model E applied with daylight dimming control system to the Model C was reduced to annual energy demand of 5.9% more than Model C.

Development of BEMS linked Demand Response System for Building Energy Demand Management (건물 에너지 수요관리를 위한 BEMS 연계형 수요반응 시스템 개발)

  • Lee, Sanghak
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.36-41
    • /
    • 2016
  • In order to take advantage of the building as an energy demand resources, it requires automated systems that can respond to the demand response event. Load aggregator has been started business in Korea, research and development of building energy management and demand response systems that can support them has been active recently. However, the ratio of introducing automated real-time demand response systems is insufficient and the cost is also high. In this research, we developed a building energy management system and OpenADR protocol to participate in a demand response and then evaluated them in real building. OpenADR is a standard protocol for automated system through the event and reporting between load aggregator and demand-side. In addition, we also developed a web-based building control system to embrace different control systems and to reduce the peak load during demand response event. We verified that the result systems are working in a building and the reduced load is measured to confirm the demand response.

Demand Control Application Strategies for Saving Electric Power Price of Central Cooling System (중앙 냉방시스템의 전력량 요금절감을 위한 디맨드제어 적용방안 연구)

  • Hwang, Jin-Won;Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • In this study, computer simulation for demand control strategies to save the electric energy and power price in the building central cooling system is done. The demand control and outdoor reset control algorithms are applied by consideration the electric energy and power price according to the energy consumption characteristics. The suggested control methods show better responses in the power price and energy consumption in comparison with the conventional one.

A Study on the Investment Review of Passive and Active Elements through Comparison of Energy Demand and Generation Variation of Zero Energy Building (제로에너지건축물의 에너지 소요량과 생산량 비교를 통한 패시브와 액티브 요소의 투자 검토 연구)

  • Lee, Soon-Myung;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.13-22
    • /
    • 2018
  • At the time when zero energy building is expected to be generalized, this study examines whether the investment in the passive element or the active element is more effective in terms of energy in the construction process of zero energy building. In other words, the effect of energy demand by passive element and the change of energy generation by active element are examined in terms of the same investment cost. The purpose of this study is to examine the change of energy demand by passive element and the change of energy generation by active element in zero energy building and to make reasonable investment decision by comparing energy with cost aspect. For this purpose, we selected the buildings to be subjected to energy simulation and derive the required energy amount and energy generation amount by using meteorological data of four regions in Korea. The change of energy demand and energy generation according to the change of application condition was derived. In order to compare and analyze the changes in energy demand and generation at the same cost standard through price survey and quotation of window and photovoltaic power generation equipment.