불법 선박 탐지는 해양 감시 체계 구축에서 중요한 요소 중 하나이다. 효과적인 해양 감시를 위해서는 광역적이고 지속적인 해상 감시 수단이 요구된다. 본 연구에서는 인공위성 SAR, HF 레이더, 무인기 그리고 AIS 통합 기반의 선박탐지 모니터링을 가능성을 검토하였다. 각 플랫폼별 시·공간 관측 특성을 고려하여 선박감시 시나리오는 HF 레이더 자료와 AIS 자료를 이용한 상시감시 시스템과 인공위성과 무인기를 활용한 이벤트 감시 시스템으로 구성되었다. 상시감시 시스템은 아직까지 HF 레이더 자료의 낮은 공간해상도로 인한 탐지 가능 선박크기 제한 및 정확도의 한계가 있다. 그러나, 인공위성 SAR 자료를 사용한 이벤트 감시 시스템은 추출된 선박 위치와 AIS 자료를 이용한 불법 선박 탐지, 그리고 SAR 영상에서 추출된 선박속도, 이동방향에 대한 정보 또는 HF 레이더 자료를 이용한 선박 트래킹 정보는 무인기 감시체계로의 전환에 주요한 정보로 활용될 수 있다. 시나리오 구성을 위한 실험을 위해 2019년 6월 25일부터 6월 26일까지 2일간 충청남도 서천군 홍원항 서측에 위치한 연도를 중심으로 통합 현장 실험을 수행하였다. 이로부터 KOMPSAT-5 SAR 영상, 무인기 영상, HF 레이더 자료 및 AIS 자료가 성공적으로 수집되었고 각각 개발된 알고리즘을 적용하여 분석되었다. 개발된 선박감시 모니터링 시스템은 다중 플랫폼으로부터 수집된 자료 및 분석 결과의 가시화 뿐만 아니라 추후 상시 및 이벤트 선박감시 시나리오를 구현에 기반이 될 것이다.
비전 기반의 감시 시스템에서 동일인의 식별은 매우 중요하다. 감시 시스템에서 주로 사용되는 CCTV 카메라의 영상은 상대적으로 낮은 해상도를 가지므로 얼굴 인식 기법을 이용하여 동일인을 식별하기는 어렵다. 본 논문에서는 CCTV 카메라 영상에서 의상 특징을 이용하여 동일인을 식별하는 알고리즘을 제안한다. 건물의 주출입구에서 출입자가 인증을 받을 때, 의상 특징이 데이터베이스에 저장된다. 그 후, 건물 내에서 촬영한 영상에 대해 배경 차감 및 피부색 발견 기법을 이용하여 의상 영역을 발견한다. 의상의 특징 벡터는 텍스처와 색상 특징을 이용하여 구성한다. 텍스처 특징은 지역적 에지 히스토그램을 이용하여 추출된다. 색상 특징은 색상 지도의 옥트리 기반 양자화(octree-based quantization)를 이용하여 추출된다. 건물 내의 촬영 영상이 주어질 때, 데이터베이스에서 의상 특징이 가장 유사한 사람을 발견함으로써 동일인을 식별하며, 의상 특징 벡터 간의 유사도 측정을 위해서는 유클리디안 거리(Euclidean distance)를 사용한다. 실험 결과, 얼굴인식 기법이 최대 43%의 성공률을 보인 데 비해, 의상 특징을 이용하여 80%의 성공률로 동일인을 식별하였다.
연결성이 좋지 않은 노두, 주향 경사 등의 지질 구조선을 연결하여 지질도를 작성하는 과정은 지질학자의 주관적인 견해를 배제하기 어렵다. 따라서 이러한 지질도는 좁은 지역들에서 나타나는 노두의 복잡한 공간적 분포를 이용하여 해석하게 된다. 또한, 물리탐사 자료를 이용하여 부족한 지질구조 정보를 보완하는 연구들이 수행되고 있으나, 물리탐사 자체가 가지는 역산해의 비유일성 및 각 지질 구조간의 물성 차이에 대한 불확실성으로 인하여 많은 제한점을 갖고 있다. 이번 연구에서 제안하는 방법은 예비 지질 모델 구현에 이용될 수 있는 물리탐사 자료 해석을 통해 획득된 구조 경계 정보와 지형학 자료의 삼점 해석 결과를 이용하여 주향 경사와 같은 지질 구조 정보를 제공할 수 있다. 이를 통하여 추정된 지질 정보들이 지질 조사를 통해 획득된 정보와 결합되기 위해서는 공간 규모 측면에서의 호환 가능성이 검증되어야 하며, 검증된 자료들은 평면상의 자료로 구성되어 지질학자들이 지질도를 작성하는 과정의 초기 자료로 이용되어진다. 따라서 해석된 지질도는 추정된 지질 정보와 공간적 구조적으로 부합되어져야 한다. 이 연구에서 개발된 알고리즘은 캐나다 뉴브런즈윅주 배서스트 광산 부근 두 지역의 습곡구조에 적용하여 해석하였다.
Objectives: This investigation is purposed to evaluate the airborne asbestos concentrations in the public buildings having asbestos containing materials(ACMs) in Seoul. Methods: The Seoul Metropolitan Government carried out an asbestos survey to the city-owned public buildings to identify the level of risk exposure, classified into low, moderate and high risk. To evaluate the airborne concentration of asbestos, 11 sampling sites in ten buildings based on the survey were selected. The air samples from the eleven sites were analyzed by Phase Contrast Microscopy(PCM) and Transmission Electron Microscopy (TEM), and compared the analytical results from the both. Results: 1. The airborne fiber concentrations by PCM were less than the detection limit($7f/mm^2$) in 9(82%) out of 11 sampling sites. The highest concentration was 0.0043 f/cc, but it was below the guideline value for indoor air quality(0.01 f/cc), proposed by the Ministry of Environment, Korea. 2. In two sampling sites, having moderate risk level, the chrysotile was identified and showed it's concentrations of 0.0102 s/cc and 0.0058 s/cc, less than $5{\mu}m$ lengths. 3. The ACMs identified in the two sampling sites were a packing material(65% of chrysotile) in mechanical area and a thermal system insulation(5% of chrysotile) in a boiler room. Having more possibility of asbestos emission in the mechanical area, it would be required to set up and carry out the asbestos management plan. Conclusions: Based on the result of this study, the airborne asbestos concentrations in the public buildings with ACMs were generally lower than the guideline value for indoor air quality. There are widespread concerns about the possible health risk resulting from the presence of airborne asbestos fibers in the public buildings. Most of the previous studies about airborne asbestos analysis in Korea were performed based on PCM method that asbestos and non-asbestos fibers are counted together. In the public and commercial buildings, having ACMs, it is suggested that the asbestos be analyzed by TEM method to identify asbestos due to concerns about asbestos exposure to workers and unspecified people.
대규모 홍수 발생 시 적기에 침수지의 공간적 분포와 변화를 모니터링하기 위한 정확하고 효율적인 매핑 수단이 필요하다. 본 연구에서는 높은 시간해상도로 동일 지역을 하루에 여러 번 관측이 가능한 저해상도 광학위성영상을 이용하여 대규모 홍수 범람으로 인한 침수지를 탐지하는 방법을 제시하고자 하였다. 2010년 1월 모로코 세부강 유역에서 발생한 대규모 홍수로 인한 침수지를 탐지하기 위하여 MODIS 일별 표면반사율 영상을 사용하였다. 영상에서 나타나는 침수지의 다양한 분광특성을 분석하여 침수지의 유형이 순수한 물표면과 물과 식물이 혼재된 형태가 함께 분포하고 있었다. 침수지 탐지는 분광특성에 따라 선정된 밴드의 반사율 영상에 직접 임계값을 적용하는 방법과 물 관련 분광지수에 임계값을 적용하는 방법을 비교하였다. 침수지 탐지 결과의 정확도 검증은 TM 영상에서 판독된 부분 지역의 침수지 지도와 비교하였다. NDWI를 제외한 나머지 방법에서 90% 이상의 높은 정확도를 얻었다. 모든 침수지 탐지 방법에서 SWIR밴드와 적색광밴드가 가장 중요하며, 2개의 밴드에 직접 임계값을 적용하는 단순한 방법으로도 정확하고 효율적인 침수지 탐지가 가능했다. 기존의 NIR밴드는 침수지 탐지에 있어서 큰 역할을 하지 못했지만, 식물이 혼재된 침수지의 유형을 구분하는데 유용했다.
본 연구는 미국 샌프란시스코시 수목 음영이 개별 건물 지붕 및 옥상에 입사되는 태양에너지 잠재량에 미치는 영향을 LiDAR를 이용한 고해상도 3차원 수치모델을 이용하여 공간적으로 정량화하였다. 최근 분산형 태양광 발전이 기후변화 대응에 중요한 부분으로 주목받고 있으나, 이러한 도심 태양광 발전은 주변부의 지형, 건물, 지붕모양, 수목 등의 음영에 의해 발전량이 제한되는 특성이 있다. 특히 건물 주변의 수목의 경우 도시열섬현상의 저감, 냉난방 에너지 수요량의 절감 등의 순기능과 태양광 발전량 감소의 역기능을 동시에 가지고 있어 두 가지 효용의 상충을 최소화하기 위해 해당 위치에 대한 공간적 분석이 요구된다. 샌프란시스코시 전체 건물 지붕면적의 태양에너지 총량은 년간 18,326,671 MWh으로, 수목의 음영에 의한 감소량은 326,406 MWh로 총량의 1.78%에 해당하였다. 건물지붕의 단위 면적당 일조량은 $34.4kWh/m^2/year$에서 $1,348.4kWh/m^2/year$ 범위로 산출되었다. 본 연구를 통해 도심 수목에 의한 건물별 일조에너지 감소량의 공간자료가 구축되었으며, 개별 건물지붕에 일조량의 변이를 주변 수목의 밀도, 평균수고, 수고의 분산값을 이용한 회귀모델을 통해 설명하였다. 본 연구는 도심수목의 환경적 순기능을 유지함과 동시에 태양광 발전 감소량의 최소화 할 수 있는 방법을 제공함으로써 지속가능한 도시를 구축하는데 기여할 것으로 기대된다.
최근 들어 홈내에 다양한 AV 미디어 장치 및 컨텐츠들이 증가함에 따라, 이들간의 상호운용성을 제공하는 표준안으로서 DLNA의 호환성 가이드라인이 제안되었다. 그런데, 이 권고안에서는 하나의 디지털홈 내부에서의 네트워크 및 미디어 장치 그리고 미디어 컨텐츠들의 상호운용성에 초점을 두었기 때문에, 여러 홈들 간의 멀티미디어 컨텐츠 공유를 위한 검색 및 전송 방법은 제시되어 있지 않다. 또한, 이 권고안에서는 DLNA 장치 발견 및 알림 메시지를 IP멀티캐스트 방식으로 전송하도록 하기 때문에, 현재 인터넷 범위에서는 IP멀티캐스트 서비스가 정상적으로 이루어짐을 보장할 수 없으므로 다른 홈내에 있는 DLNA의 디바이스를 인터넷을 통해 원격에서 검색 및 제어할 수 없다는 제약점이 있다. 따라서, 본 논문에서는 이러한 제약점을 분석하고, 동적 사설 IP기반의 DLNA 장치들로 구성된 여러 홈내에 분포되어 있는 미디어 컨텐츠를 상호 공유할 수 있는 방법으로서, IHM(Inter-Home Media) 프락시 시스템 구조 및 방법에 대해 제안한다. 본 제안된 방법은 자신의 홈 뿐만아니라 다른 홈내에 분산되어 있는 여러 다양한 미디어 컨텐츠들을 공유할 수 있도록 함으로써, 사용자의 위치제약성을 해소할 뿐만 아니라 각각의 홈내 거주자 측면에서는 자신이 부담해야할 컨텐츠 저장소 비용을 절약할 수 있다는 잇점을 가진다.
암종 분류은 현장의 지질학적 또는 지반공학적 특성 파악을 위해 요구되는 매우 기본적인 행위이나 암석의 성인, 지역, 지질학적 이력 특성에 따라 동일 암종이라 하여도 매우 다양한 형태와 색 조성을 보이므로 깊은 지질학적 학식과 경험 없이는 쉬운 일은 아니다. 또한, 다른 여러 분야의 분류 작업에서 딥러닝 영상 처리 기법들이 성공적으로 적용되고 있으며, 지질학적 분류나 평가 분야에서도 딥러닝 기법의 적용에 대한 관심이 증대되고 있다. 따라서, 본 연구에서는 동일 암종임에도 다양한 형태와 색을 갖게 되는 실제 상황을 감안하여, 정확한 자동 암종 분류를 위한 딥러닝 기법의 적용 가능성에 대해 검토하였다. 이러한 기법은 향후에 현장 암종분류 작업을 수행하는 현장 기술자들을 지원할 수 있는 효과적인 툴로 활용 가능할 것이다. 본 연구에서 사용된 딥러닝 알고리즘은 매우 깊은 네트워크 구조로 객체 인식과 분류를 할 수 있는 것으로 잘 알려진 'ResNet' 계열의 딥러닝 알고리즘을 사용하였다. 적용된 딥러닝에서는 10개의 암종에 대한 다양한 암석 이미지들을 학습시켰으며, 학습 시키지 않은 암석 이미지들에 대하여 84% 수준 이상의 암종 분류 정확도를 보였다. 본 결과로 부터 다양한 성인과 지질학적 이력을 갖는 다양한 형태와 색의 암석들도 지질 전문가 수준으로 분류해 낼 수 있는 것으로 파악되었다. 나아가 다양한 지역과 현장에서 수집된 암석의 이미지와 지질학자들의 분류 결과가 학습데이터로 지속적으로 누적이 되어 재학습에 반영된다면 암종분류 성능은 자동으로 향상될 것이다.
청소 로봇의 중요한 기술 중 하나는 커버리지 성능이다. 대부분의 가정용 청소 로봇들은 로봇의 크기나 제작 비용 때문에 로봇을 구성하는 시스템 구성에 제약을 받게 된다. 이러한 이유 때문에 청소 로봇의 가장 중요한 요소인 커버리지 성능을 높이는데 필요한, 위치 인식이나 맵 구성을 위한 기존의 알고리즘들을 쉽게 적용할 수가 없다. 본 논문에서는 청소 로봇을 위한 두 가지 문제에 초점을 맞추어 이를 해결 할 수 있는 방안을 제시한다. 먼저 계산 량을 줄여 저가형 시스템을 구성할 수 있어야 한다. 이를 위해 청소 환경을 단순화 하는 형태로 변화 시켜 위치 인식과 특징점 맵을 구성하는데 필요한 계산량을 줄이는 방법을 제안한다. 두 번째로 청소로봇에 사용하는 센서들의 성능이 매우 제한적이다. 청소 로봇에 가장 많이 사용되는 센서는 초음파 센서와 적외선 센서이다. 초음파 센서의 경우에는 로봇의 크기나 구조적인 문제 때문에 측정 범위가 제한되고, 적외선의 경우엔 비용 문제와 센서 자체가 가지고 있는 측정 범위에 대한 문제에 의해 근거리 측정용 센서만을 사용한다. 이러한 센서들의 성능을 고려한 특징점 추출 방법을 설명하고 이를 이용한 맵 구성과 청소 영역 분할에 대한 방법을 제안한다. 본 논문에서 제안된 전 영역 청소를 위한 알고리즘들은 실제 판매되는 청소 로봇에 적용하여, 그 성능을 검증한다.
최근 국내외적으로 기후변화로 인한 대형화재, 집중호우, 지진 등으로 재난발생 가능성이 높아지고 있으며, 특히 어린이와 노약자등을 포함한 다양한 사람들이 몰리는 전통시장, 노유자시설, 다중이용시설 등 이용자 밀집지역에 대형 재난사고가 지속적으로 발생하고 있다. 연구목적: 본 연구에서는 화재발생 시 이용자 밀집시설에서 화재발생 사실을 조기에 감지하고, 대피자가 안전하게 대피하기 위해 빅데이터와 첨단기술을 활용한 재난감지 및 최적의 대피경로를 분석하고자 한다. 연구방법: 상황인지 기반의 3차원 객체모델 기술과 A*알고리즘의 최적화를 통한 새로운 알고리즘을 제안하고, 이들 활용한 시나리오 기반의 최적 대피경로 선정 기법을 제시하였다. 연구결과: HPA*E알고리즘을 이용하여 화재발생 시 대피시뮬레이션을 3D모델로 재현하고, 최적의 대피경로와 대피시간을 시나리오별로 산출하였다. 결론: 본 연구는 향후 우리나라에서 재난사고 발생 시 대피자가 안전하고 신속하게 대피할 수 있는 경로를 제시함으로써 인명피해를 줄 일 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.