• Title/Summary/Keyword: building control

Search Result 3,221, Processing Time 0.03 seconds

Base-isolated building with high-damping spring system subjected to near fault earthquakes

  • Tornello, Miguel Eduardo;Sarrazin, Mauricio
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.315-340
    • /
    • 2012
  • There are many types of seismic isolation devices that are being used today for structural control of earthquake response in buildings. The most commonly used are sliding bearings and elastomeric bearings, the latter with or without lead core. An alternative solution is the use of steel springs combined with viscoelastic fluid dampers, which is the case discussed in this paper. An analytical study of a three-story building supported on helical steel springs and viscoelastic fluid dampers, GERB Control System (GCS), subjected to near-fault earthquakes is presented. Several earthquakes records have been obtained by the acceleration network installed in the isolated building and in its non-isolated twin since they were finished. These experimental results are analysed and discussed. The aim is to show that the spring-based system can be an alternative for base isolation of small building located near active faults.

A Design of An Active PID control using Immune Algorithm for Vibration Control of Building Structure (구조물 진동제어를 위한 Immune Algorithm을 이용한 Active PID 제어기 설계)

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.72-74
    • /
    • 2005
  • In this paper, we propose an adaptive PID controller using a cell-mediated immune response to improve a PID control performance. The proposed controller is based on the specific immune response of the biological immune system that is cell-mediated immunity. The immune system of organisms in the real body regulates the antibody and the T-cells to protect an attack from the foreign materials like virus, germ cells, and other antigens. It has similar characteristics that are the adaptation and robustness to overcome disturbances and to control the plant of engineering application. We first build a model of the T-cell regulated immune response mechanism and then designed an I-PID controller focusing on the T-cell regulated immune response of the biological immune system. We apply the proposed methodology to building structures to mitigate vibrations due to strong winds for evaluation of control performances. Through computer simulations, system responses are illustrated and additionally compared to traditional control approaches.

  • PDF

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.

Prediction and control of buildings with sensor actuators of fuzzy EB algorithm

  • Chen, Tim;Bird, Alex;Muhammad, John Mazhar;Cao, S. Bhaskara;Melvilled, Charles;Cheng, C.Y.J.
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.307-315
    • /
    • 2019
  • Building prediction and control theory have been drawing the attention of many scientists over the past few years because design and control efficiency consumes the most financial and energy. In the literature, many methods have been proposed to achieve this goal by trying different control theorems, but all of these methods face some problems in correctly solving the problem. The Evolutionary Bat (EB) Algorithm is one of the recently introduced optimization methods and providing researchers to solve different types of optimization problems. This paper applies EB to the optimization of building control design. The optimized parameter is the input to the fuzzy controller, which gives the status response as an output, which in turn changes the state of the associated actuator. The novel control criterion for guarantee of the stability of the system is also derived for the demonstration in the analysis. This systematic and simplified controller design approach is the contribution for solving complex dynamic engineering system subjected to external disturbances. The experimental results show that the method achieves effective results in the design of closed-loop system. Therefore, by establishing the stability of the closed-loop system, the behavior of the closed-loop building system can be precisely predicted and stabilized.

An Examination of Load Cut-off Effect Using Modern Buildings in Korean Traditional Passive Methods

  • Kim, Hwan-yong;Song, Young-hak;Kim, Hyemi
    • Architectural research
    • /
    • v.19 no.2
    • /
    • pp.45-52
    • /
    • 2017
  • Recently, as a new perspective to view the architecture in relation to global environmental problems, interest in environmental architecture that conforms to the surrounding environment and nature with nature has been expanded as a part of the natural ecosystem, rather than seeing the building as an independent entity. Traditional Korean architecture creates a comfortable indoor environment by appropriately using the natural energy around, ranging from the arrangement of the building and the space composition to the use of detailed materials and to harmonize the artificial architectural environment without harming the natural ecosystem. The purpose of this study is to propose a method to apply the environmental control techniques of traditional buildings to modern buildings. As a research method, the characteristics of Korean traditional buildings according to the climatic characteristics of Korea were recognized through existing literature data and when applied to methods of traditional buildings, ventilation systems, control through eaves, and humidity control using Hanji the effect of energy load control on traditional buildings was analyzed and identified through existing literature. After analyzing the problems of modern architecture, we analyzed the effect of the environmental control system of traditional architecture on modern architecture. Simulation results show that the application of the environmental control system of traditional buildings to modern buildings reduces the cooling and heating load of modern buildings and has an effect on humidity control. This study suggests that quantitative energy saving will be possible if the environmental control techniques of traditional buildings are appropriately applied to modern buildings.

Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons (도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향)

  • Park, Soo-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2014
  • In this study, the effects of building-roof cooling on scalar dispersion in three-dimensional street canyons are investigated using a computational fluid dynamics (CFD) model. For this, surface temperature of building roof is systematically changed and non-reactive pollutants are released from street bottom in urban street canyons with the aspect ratio of 1. The characteristics of flow, air temperature, and non-reactive pollutant dispersion in the control experiment are analyzed first. Then, the effects of building-roof cooling are investigated by comparing the results with those in the control experiment. In the control experiment, a portal vortex which is a secondary flow induced by ambient air flow is formed in each street canyon. Averaged air temperature is higher inside the street canyon than in both sides of the street canyon, because warmer air is coming into the street canyon from the roof level. However, air temperature near the street bottom is lower inside the street canyon due to the inflow of cooler air from both sides of the street canyon. As building-roof temperature decreases, wind speed at the roof level increases and portal vortex becomes intensified (that is, downdraft, reverse flow, and updraft becomes stronger). Building-roof cooling contributes to the reduction of average concentration of the non-reactive pollutants and average air temperature in the street canyon. The results imply that building-roof cooling has positive effects on improvement of thermal environment and air quality in urban areas.

Magneto-rheological and passive damper combinations for seismic mitigation of building structures

  • Karunaratne, Nivithigala P.K.V.;Thambiratnam, David P.;Perera, Nimal J.
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1001-1025
    • /
    • 2016
  • Building structures generally have inherent low damping capability and hence are vulnerable to seismic excitations. Control devices therefore play a useful role in providing safety to building structures subject to seismic events. In recent years semi-active dampers have gained considerable attention as structural control devices in the building construction industry. Magneto-rheological (MR) damper, a type of semi-active damper has proven to be effective in seismic mitigation of building structures. MR dampers contain a controllable MR fluid whose rheological properties vary rapidly with the applied magnetic field. Although some research has been carried out on the use of MR dampers in building structures, optimal design of MR damper and combined use of MR and passive dampers for real scale buildings has hardly been investigated. This paper investigates the use of MR dampers and incorporating MR-passive damper combinations in building structures in order to achieve acceptable levels of seismic performance. In order to do so, it first develops the MR damper model by integrating control algorithms commonly used in MR damper modelling. The developed MR damper is then integrated in to the seismically excited structure as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Analyses are conducted to investigate the influence of location and number of devices on the seismic performance of the building structure. The findings of this paper provide information towards the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.

Development of BEMS linked Demand Response System for Building Energy Demand Management (건물 에너지 수요관리를 위한 BEMS 연계형 수요반응 시스템 개발)

  • Lee, Sanghak
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.36-41
    • /
    • 2016
  • In order to take advantage of the building as an energy demand resources, it requires automated systems that can respond to the demand response event. Load aggregator has been started business in Korea, research and development of building energy management and demand response systems that can support them has been active recently. However, the ratio of introducing automated real-time demand response systems is insufficient and the cost is also high. In this research, we developed a building energy management system and OpenADR protocol to participate in a demand response and then evaluated them in real building. OpenADR is a standard protocol for automated system through the event and reporting between load aggregator and demand-side. In addition, we also developed a web-based building control system to embrace different control systems and to reduce the peak load during demand response event. We verified that the result systems are working in a building and the reduced load is measured to confirm the demand response.