• Title/Summary/Keyword: building airtightness

Search Result 58, Processing Time 0.028 seconds

A Study on Relationship Insulation Thickness and Infiltration Load by Window (단열재 두께 변화와 창호 침기 부하와의 관계)

  • Choi, Jeong-Min;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.422-427
    • /
    • 2012
  • This study investigates on the relationship between total load which is caused by infiltration and insulation thickness against compensation effect. As the result of experiment, the PVC(Synthetic resins sash) window frame in airtightness is superior to the AL(Aluminum sash) window frame. In this study, as the increasing of insulation thickness in reference building does not reduce significantly cooling load, the compensation effect due to airtightness against infiltration is very small. But the compensation effect against infiltration can be closely related with heating load. Therefore, the proper thermal insulation thickness can be needed respect to cooling and heating load.

A Study on Integration of Pre-manufactured Window Systems with Conventional Building Design Elements (자연채광 요소기술 도출을 위한 창호시스템과 건물요소와의 통합화에 관한 연구)

  • Kim, Jeong-Tai;Jeong, In-Young;Jeong, Yu-Gun
    • KIEAE Journal
    • /
    • v.2 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Importation of mass production of building elements with standardization are vital way for environment-friendly architectural planning, which it makes the lifespan of a building longer than normal with easier maintenance and remodeling. The advantage might be magnified here in Korea since typical types of apartment house are dominated in our construction market. For the purpose, a series of pre-manufactured window systems is one of the optimal elements to be prototype building modules. In the design process of the system windows, lots of consideration should be involved and they include aesthetics, thermal performance, noise reduction, airtightness, and so forth. A real survey on the ready-made window systems has been performed and its optical issue related to luminous peculiarity is what is of major interest in this study. In addition, technical review on more advanced window products and their adaptable potential for the integration with fundamental architectural design elements were carried out.

The Field Measurement of Airtightness in the Apartment Buildings (신축공동주택의 기밀성능 실측에 관한 연구)

  • Park, Won seok;Yoon, Jae Ock
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.43-50
    • /
    • 2003
  • Nowdays the apartment is a main type of modernized residential buildings. According to the improvement of construction techniques and functions of windows and doors, recent apartments are enhanced air tightness of windows, doors and building envelopes. As Infiltration is decreased and natural ventilation is reduced, energy could be saved in winter. However, indoor air quality is bad. The air Infiltration of a building could be enlarged by physical actions, such as building designs, constructions and reduction of air tightness which is caused by aging. This research analyzes and measures with KNS-4000P (Sapporo air tightness measurement) the air tightness of the high rise apartments which is recently constructed and not occupied yet. With depressurization method, the KNS-4000 installed on the window and the indoor air-leakage was measured. At that time, Air come out from the edge of the windows and doors because of the pressure differences between indoor and outdoor. We measure the amount of the air as effective air leakage areas. This method of depressurization takes less time to measure than other methods and is less affected from other conditions. We measured infiltration of total 56 household, 29 households S apartment (total floor area : $64.42m^2$) in Balan and 29 households D apartment(total floor area : $78.21m^2$) in Chonan. As a result of the field measurements at October 2003, normalized leakage area of D apartment in Cheonan was $2.05cm^2/m^2{\sim}3.49cm^2/m^2$ (average: $2.77cm^2/m^2$) and normalized leakage area of S apartment in Balan is $1.23cm^2/m^2{\sim}1.68cm^2/m^2$ (average: $1.5cm^2/m^2$).

Study for Improvement of Domestic System through Regulation based on Comparison of Green Building Certification System Analysis - Focused on the G-SEED, BREEAM

  • Hyun, Eun-Mi;Kim, Yong-Sik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The main purpose of the green buildings by reducing energy consumption and carbon footprint of the building society, global as to ensure the sustainability of the building and the environment. These regulations and schemes are used to activate the green buildings were made on the basis of the relevant laws and regulations. Mainly in the research for the improvement of the domestic institutional assessment items, the analysis of the legislation was fundamentally focused on Scoring the incomplete state. The analysis based on the laws and regulations of the institution is the way to know the purpose and direction of the respective certification. This study was performed in the following order to target the new commercial buildings. First, the analysis of the geungeobeop G-SEED and BREEAM. Second, we analyze the content and method of building energy performance in the certification system. As a result, Green Building Act is broad in relation to the composition of the contents are building for the activation energy green building and EPI is dealt with in an abstract and presented the applicability of such documentary content of insulation and airtightness, efficient machine. In contrast, the UK has been directly limit the carbon footprint of buildings in the Building Regulations Part L and evaluate them in BREEAM. This analysis of the ways to reduce substantially the energy for domestic green building regulations should be addressed through the feed.

A Study on Concentration Change of Volatile Organic Compounds; VOCs by using Mock-up Test (실물실험을 통한 개별 VOC의 농도변화에 관한 연구)

  • Kim Chang-Nam;Lee Yun-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.487-495
    • /
    • 2005
  • Recently, due to the airtightness of buildings or the misuse of building materials, we have been witness SHS (Sick House Syndrome) which can have bad influences on the resident in an existing apartment house as well as newly constructed apartment house start to attract public attention. As a result of this situation, we went to restrict the TVOC (Total Volatile Organic Compound) and formaldehyde. But these guidelines concentrated on only TVOC although TVOC are consist of many individual VOC. Therefore, in this study, we will look about concentration change of VOCs (Volatile Organic Compounds) by using Mock-up test. As result of test, the concentration of four individual VOC (Benzene, Toluene, Ethylbenzene, Styrene) showed quitely low level after 7 days. On the other hand the concentration of Xylene and formaldehyde showed low level after 14 days.

Bio Safety Level 3 Laboratory Construction Case (생물안전 3등급연구시설의 시공 사례)

  • Kim, Bong-Shin;Lim, Seon-Ho;Jung, Choong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.881-886
    • /
    • 2009
  • Bio safety level-3 laboratory is the research facility with concerns for the BL-3 contamination, at the same time the safety of it is guarantied. Based on comfortable environmental maintenance of the research laboratory, building, machinery, electricity, and controls are facilitated to keep airtightness(minus pressure) of each room in case of not only access and operation, but even emergency.

  • PDF

A Study on the Planning Characteristics of Passive House by the Building Structural Types in Foreign Cases (해외 패시브하우스의 건축구조유형별 계획특성 연구)

  • Yang, Jung-Pil
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • The purpose of this study is to analyze the planning characteristics of passive house by the building structural types in foreign cases. The interests and demands about passive house have been increased, and various building structural types and design methods have been attempted for passive house in Korea. But domestic research results and development experiences about passive house were lack. The results of this study are as follows; First, in terms of energy performance, insulation performance, airtightness, there are not significant differences at the 95% confidence level by the structural types of passive house. Second, in terms of the types of insulation materials, there are significant differences at the 95% confidence level by the structural types of passive house. Third, in principle there is no need of traditional heating facility in passive houses, but in practice traditional heating facilities are used additionally in about half of survey cases for the comfort of occupants.

Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West- (역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

Development of the Passive Outside Insulation Composite Panel for Energy Self-Sufficiency of Building in the Region (지역 건축물의 에너지 자립을 위한 패시브 외단열 복합패널 개발 연구)

  • Moon, Sun-Wook
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The study aims to address the energy crisis and realize self-sufficiency of building as part of local energy independence, breaking away from a single concentrated energy supply system. It is intended to develop modules of the outside insulation composite panels that conform to passive certification criteria and for site-assembly systematization. The method of study first identifies trends and passive house in literature and advanced research. Second, the target performance for development is set, and the structural material is selected and designed to simulate performance. Third, a test specimen of the passive outside insulation curtain wall module designed is manufactured and constructed to test its heat transmission coefficient, condensation performance and airtightness. Finally, analyze performance test results, and explore and propose ways to improve the estimation and improvement of incomplete causes to achieve the goal. The final test results achieved the target performance of condensation and airtightness, and the heat transmission coefficient was $0.16W/(m^2{\cdot}K)$, which is $0.01W/(m^2{\cdot})K$ below the performance target. As for the lack of performance, we saw a need for a complementary design to account for simulation errors. It also provided an opportunity to recognize that insulated walls with performance can impact performance at small break. Thus, to be commercialized into a product with the need for improvement in the design of the joint parts, a management system is needed to increase the precision in the fabrication process.

Solving the Problems Caused by Stack Effect in a High-rise Residential Building through Field Measurement and Simulation; Case Study (실측과 시뮬레이션을 통한 초고층 주거건물에서의 연돌효과 문제의 해결)

  • Koo Sung-Han;Jo Jae-Hun;Yeo Myoung-Souk;Kim Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.16 no.4
    • /
    • pp.73-80
    • /
    • 2005
  • A high-rise residential building experienced stack effect problems during the winter such as difficulties in opening residential entrance doors and whistling noise from elevator doors generated by airflow. Field measurements were carried out on the building and the problems were verified by the analysis of the measurement results from three points of view: the total stack pressure difference, pressure distribution on each floor, and the location of the neutral pressure level. Based on the analysis of the three key parameters, possible solutions were proposed, such as zoning vertical shafts, lessening the airflow from the entrance doors on basement floors and lobby floor by installing vestibules, improving the airtightness of exterior walls, and installing separation doors where the problems occur. Simulations of proposed solutions were conducted and the effects of reducing the pressure difference were evaluated. Stack effect problems in a high-rise residential building were verified through field measurements and could be mitigated by the solutions which were drawn from the analysis of the field measurements and the simulation results.