• 제목/요약/키워드: budget of organic carbon

검색결과 27건 처리시간 0.025초

횡성호의 유기물 수지 및 거동 특성 (Organic Matters Budget and Movement Characteristic in Lake Hoengseong)

  • 정승현;박혜경;윤석환
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.238-246
    • /
    • 2012
  • Organic matters budget in Lake Hoengseong were monthly investigated from April 2009 to November 2009. The intense rainfall occurred at between July and August and the hydrological factors were highly varied during the rainfall season. By the concentrated rainfall, the elevation, influx and efflux were sharply increased and the turbid water was also flowed into the middle water column in Lake. The inflow of turbid water increased the nutrient concentrations in water body and this appears to stimulate of phytoplankton regard as the primary productivity of influx of organic matter. Monthly average concentration of dissolved organic carbon (DOC) was generally higher than the particulate organic carbon (POC) concentration in Lake, but Temporal and spatial variation of POC concentration was higher than DOC and the maximum POC concentration was recorded in surface water in August, had the highest phytoplankton biomass. Organic carbon concentration in inflow site was rarely changed during the dry season, but the concentration was rapidly increased by the initial intense rainfall. In organic matters budget, the most of the organic matters was inflowed from the inflow site at rainfall season. Especially, the influx of allochthonous organic matters during the intense rainfall was 72.4% in the total influx organic matters.

Budget and distribution of organic carbon in Taxus cuspidata forest in subalpine zone of Mt. Halla

  • Jang, Rae-Ha;Jeong, Heon-Mo;Lee, Eung-Pill;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제41권1호
    • /
    • pp.19-28
    • /
    • 2017
  • Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to $CO_2$ stocks. Results: The amount of plant organic carbon was $13.60ton\;C\;ha^{-1}year^{-1}$ in 2012 and $14.29ton\;C\;ha^{-1}year^{-1}$ in 2013. And average organic carbon introduced to forest floor through litter production was $0.71ton\;C\;ha^{-1}year^{-1}$. Organic carbon distributed in forest floor litter layer was $0.73ton\;C\;ha^{-1}year^{-1}$ on average and accumulated organic carbon in soil was $51.13ton\;C\;ha^{-1}year^{-1}$ on average. In 2012, Amount of released $CO_2$ from soil to atmosphere was 10.93 ton $CO_2ha^{-1}year^{-1}$. Conclusions: The net ecosystem production based on the difference between net primary production of organic carbon and soil respiration was $-1.74ton\;C\;ha^{-1}year^{-1}$ releasing more carbon than it absorbed.

월악산 용하계곡 굴참나무림의 유기탄소 분포 및 수지 (Organic Carbon Distribution and Budget in the Quercus variabilis Forest in the Youngha valley of Worak National Park)

  • 남궁정;최현진;한아름;문형태
    • 환경생물
    • /
    • 제26권3호
    • /
    • pp.170-176
    • /
    • 2008
  • 월악산 용하계곡에 발달되어 있는 굴참나무림에서 2005년부터 2006년까지 지상부와 지하부 생물량, 낙엽층 그리고 토양의 유기탄소의 분포를 조사하였으며, 탄소수지를 파악하기 위해 토양 호흡량을 측정하였다. 지상부와 지하부 생물량에 분포된 탄소량은 각각 56.22, 13.90 ton C ha$^{-1}$이 었으며, 낙엽층과 토양의 유기탄소량은 각각 4.7 ton C ha$^{-1}$, 119.14 ton C ha$^{-1}$ 50 cm-depth$^{-1}$로, 조사지 굴참나무림의 전체 유기탄소량은 193.96 ton C ha$^{-1}$이었으며, 이중 61.43%의 유기탄소가 토양에 분포하는 것으로 조사되었다. 본 굴참나무림에서 연간 지상부와 지하부 생물량에 의한 유기탄소의 순 증가량은 7.68 ton C ha$^{-1}$ yr$^{-1}$이었으며, 토양호흡을 통해 6.21 ton C ha$^{-1}$ yr$^{-1}$의 유기탄소가 방출되어 본 굴참나무림에서는 연간 대기로부터 1.47 ton C ha$^{-1}$ yr$^{-1}$가 순흡수되는 것으로 조사되었다.

Organic carbon distribution and budget of dominant woody plant community in the subalpine zone at volcanic Jeju Island, Korea

  • Jang, Rae-Ha;Lee, Seung-Yeon;Lee, Eung-Pill;Lee, Soo-In;Kim, Eui-Joo;Lee, Sang-Hun;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제43권4호
    • /
    • pp.390-399
    • /
    • 2019
  • Background: The Northern Hemisphere forest ecosystem is a major sink for atmospheric carbon dioxide, and the subalpine zone stores large amounts of carbon; however, their magnitude and distribution of stored carbon are still unclear. Results: To clarify the carbon distribution and carbon budget in the subalpine zone at volcanic Jeju Island, Korea, we report the C stock and changes therein owing to vegetation form, litter production, forest floor, and soil, and soil respiration between 2014 and 2016, for three subalpine forest ecosystems, namely, Abies koreana forest, Taxus cuspidata forest, and Juniperus chinensis var. sargentii forest. Organic carbon distribution of vegetation and NPP were bigger in the A. koreana forest than in the other two forests. However, the amount of soil organic carbon distribution was the highest in the J. chinensis var. sargentii forest. Compared to the amount of organic carbon distribution (AOCD) of aboveground vegetation (57.15 t C ha-1) on the subalpine-alpine forest in India, AOCD of vegetation in the subalpine forest in Mt. Halla was below 50%, but AOCD of soil in Mt. Halla was higher. We also compared our results of organic carbon budget in subalpine forest at volcanic island with data synthesized from subalpine forests in various countries. Conclusions: The subalpine forest is a carbon reservoir that stores a large amount of organic carbon in the forest soils and is expected to provide a high level of ecosystem services.

강우기 및 평수기의 팔당호 유기물 수지산정 (Organic Carbon Budget during Rainy and Dry Period in Paldang Reservoir)

  • 이유희;정동일;박혜경
    • 생태와환경
    • /
    • 제37권3호통권108호
    • /
    • pp.272-281
    • /
    • 2004
  • 팔당호의 유기물 수지 산정을 위해 팔당호내 일차생산력을 측정하고 유입하천의 유입유기물량 및 방류유기물량을 측정하여 유기물부하에서 내부생성유기물의 기여도를 평가하였다. 식물플랑크톤에 의한 일차생산력은 지점과 시기에 따라 큰 차이를 보여 3회 조사결과 $101{\sim}2701\;mgC\;m^{-2}day{-1}$의 범위로 나타났으며, 체류시간이 길고, 수체내 클로로필 a농도가 높았던 6월에 모든 지점에서 높은 생산력을 보였다. 빈번한 강우로 체류시간이 짧고 조류현존량이 적었던 4월과 8월의 조사에서는 총 유기물유입량에서 내부생성유기물량은 약 7%를 차지하였고 이중 식물플랑크톤에 의한 내부생산기여도는 약 5%로 매우 낮았다. 그러나 조사일 전후로 강우가 없어 수체가 안정되었고 외부유입유기물량이 적었던 6월 조사에서는 식물플랑크톤에 의한 내부생산 기여도가 29.0%를 보였다.

Budget and distribution of organic carbon in Quercus serrata Thunb. ex Murray forest in Mt. Worak

  • Lee, Seung-Hyuk;Jang, Rae-Ha;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제38권4호
    • /
    • pp.425-436
    • /
    • 2015
  • The carbon cycle came into the spotlight due to the climate change and forests are well-known for their capacity to store carbon amongst other terrestrial ecosystems. The annual organic carbon of litter production, forest floor litter layer, soil, aboveground and belowground part of plant, standing biomass, net primary production, uptake of organic carbon, soil respiration, etc. were measured in Mt. Worak in order to understand the production and carbon budget of Quercus serrata forest that are widely spread in the central and southern part of the Korean Peninsula. The total amount of organic carbon of Q. serrata forest during the study period (2010-2013) was 130.745 ton C ha-1. The aboveground part of plant, belowground part of plant, forest floor litter layer, and organic carbon in soil was 50.041, 12.510, 4.075, and 64.119 ton C ha-1, respectively. The total average of carbon fixation in plants from photosynthesis was 4.935 ton C ha-1 yr-1 and organic carbon released from soil respiration to microbial respiration was 3.972 ton C ha-1 yr-1. As a result, the net ecosystem production of Q. serrata forest estimated from carbon fixation and soil respiration was 0.963 ton C ha-1 yr-1. Therefore, it seems that Q. serrata forest can act as a sink that absorbs carbon from the atmosphere. The carbon uptake of Q. serrata forest was highest in stem of the plant and the research site had young forest which had many trees with small diameter at breast height (DBH). Consequentially, it seems that active matter production and vigorous carbon dioxide assimilation occurred in Q. serrata forest and these results have proven to be effective for Q. serrata forest to play a role as carbon storage and NEP.

지구규모의 탄소 순환 및 물질수지 연구 (Global Carbon Cycle and Budget Study)

  • 권오열
    • 한국환경과학회지
    • /
    • 제5권4호
    • /
    • pp.429-440
    • /
    • 1996
  • A global carbon cycle model (GCCM), that incorporates interaction among the terrestrial biosphere, ocean, and atmosphere, was developed to study the carbon cycling aid global carbon budget, especially due to anthropogenic $CO_2$ emission. The model that is based on C, 13C and 14C mass balance, was calibrated with the observed $CO_2$ concentration, $\delta$13C and $\Delta$14C in the atmosphere, Δ14C in the soil, and $\Delta$14C in the ocean. Also, GCCM was constrained by the literature values of oceanic carbon uptake and CO, emissions from deforestation. Inputs (forcing functions in the model) were the C, 13C and 14C as $CO_2$ emissions from fossil fuel use, and 14C injection into the stratosphere by bomb-tests. The simulated annual carbon budget of 1980s due to anthropoRenic $CO_2$ shows that the global sources were 5.43 Gt-C/yr from fossil fuel use and 0.91 Gt-C/yr from deforestation, and the sinks were 3.29 Gt-C/yr in the atmosphere, 0.90 Gt-C/yr in the terrestrial biosphere and 2.15 Gt-C/yr in the ocean. The terrestrial biosphere is currently at zero net exchange with the atmosphere, but carbon is lost cia organic carbon runoff to the ocean. The model could be utilized for a variety of studies in $CO_2$ policy and management, climate modeling, $CO_2$ impacts, and crop models.

  • PDF

하구 환경의 유기탄소 순환에 관한 국내 연구 동향 (Research Trends on the Organic Carbon Cycle in Estuarine Environment in South Korea)

  • 강수진
    • Ocean and Polar Research
    • /
    • 제46권1호
    • /
    • pp.93-103
    • /
    • 2024
  • Estuaries are connecting pathways where terrestrial carbon is transported to the ocean and environments where various biogeochemical cycles occur. It is essential to estimate the carbon flux across the land-sea continuum to accurately determine the global carbon budget. Additionally, understanding the carbon characteristics of estuarine environments provides valuable information for watershed management and coastal ecosystem conservation. This paper introduces research results in Korea regarding the organic carbon cycle in estuarine environments. In particular, it focuses on research results concerning organic carbon characteristics using stable and radioisotopes, and, based on this, suggests directions for future study.

The Partitioning of Organic Carbon Cycle in Coastal Sediments of Kwangyang Bay

  • Han, Myung-Woo;Lee, In-Ho;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • 제32권3호
    • /
    • pp.103-111
    • /
    • 1997
  • Biogeochemical cycling of organic carbon is quantitatively partitioned in terms of 1) flux to the ocean bottom, 2) benthic utilization at or near the sediment-water interface, 3) remineralization and 4) burial within sediments, by making an independent determination for each component process from a single coastal site in Kwangyang Bay. The partitioning suggests that the benthic utilization at or near the sediment-water interface is the major mode of organic carbon cycling at the site. The benthic utilization takes 61.8% (441.6 gCm$^{-2}$ yr $^{-1}$) of the total near-bottem organic carbon flux, 714.6 gCm $^{-2}$yr$^{-1}$, and far exceeds the remineralization of organic carbon within the sediments which amounts only to 6% (41.24 gCm$^{-2}$yr$^{-1}$) of the total near-bottom flux. The residence time is about 1.6 years for the sedimentary metabolic organic carbon in the upper 45 cm. The dominant partitioning of the benthic utilization in the carbon budget suggests that most of labile organic carbons are consumed at or near the sediment-water interface and are left over to the sediment column by significantly diminished amounts.

  • PDF

합천호의 TOC 분포 특성 (Characteristics of TOC Distribution in Lake Hapcheon)

  • 성진욱;김형진;박제철
    • 한국환경과학회지
    • /
    • 제20권6호
    • /
    • pp.711-719
    • /
    • 2011
  • This study was conducted to estimate the distribution characteristics and budget of organic matter in the Lake Hapcheon. In the dry season, the concentration ranges of organic carbons were similar, but in the rainfall season, it showed about double concentrations. Changes of vertical water quality in the lake, there were no big differences with the concentration by the depth. However, it tends to be relatively high on the surface, a little low on the mid-depth and high in the lake bottom. DOC rate at TOC, it was lower than POC rate at inflow and DOC rate was higher than POC rate in the lake and discharging water. R-DOC accounted for more 80% of DOC rate in all investigated areas, therefore we judge that this R-DOC is to increase the organic carbon pollution gradually. As the result of the calculated organic carbon budget in the Lake Hapcheon, the amount of allochthonous, autochthonous and release were 3,552, 3,288, 228 tonC/year, respectively. the amount of discharge, decomposition and sedimentation were 504, 1,344, 5,520 tonC/year, respectively. According to this investigation, the changed amount of organic matter in the Lake Hapcheon recorded -300 tonC/year with the increase of 7,068 tonC/year and the decrease of 7,368 tonC/year.