• Title/Summary/Keyword: buckling-restrained brace(BRB)

Search Result 48, Processing Time 0.021 seconds

Experimental Evaluation for Structural Performance of Diagrid BRB Structural System (Diagrid BRB의 실험적 구조성능 평가)

  • Lee, Jong-Hyock;Ju, Young-Kyu;Kim, Young-Ju;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.261-269
    • /
    • 2010
  • It is now possible to design buildings in various forms using a diagrid structural system, which is the one of the most useful structural systems. It is difficult to design and construct the connections, however, and the bucklings in braces weaken the seismic performance of structures. In this study, the initial stiffness, ductility, and energy-dissipated capacity of a diagrid and a diagrid BRB were evaluated via frame tests. The results of the cycling load tests showed that the diagrid BRB had better initial stiffness and ductility, and dissipated extra energy after the BRBs were yielded.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings

  • Ainullah-Mirzazadah, Ainullah-Mirzazadah;Sabbagh-Yazdi, Saeed-Reza
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.83-100
    • /
    • 2022
  • Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

Seismic Performance Evaluation of Flat Plate Structures Retrofitted with Steel Plates and Braces (강판과 가새로 보강된 무량판 구조물의 내진 성능평가)

  • Shin, Woo-Seung;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.451-458
    • /
    • 2008
  • In this study 3- and 6-story flat plate structures designed only for gravity load are retrofitted with steel plates and braces and their seismic performances are evaluated to verify the effect of seismic retrofit. According to the analysis results obtained from nonlinear static and dynamic analyses both the strength and stiffness are significantly enhanced as a result of the seismic retrofit. Especially the effect of column jacketing could be enhanced significantly when slabs were reinforced to prevent premature punching shear failure. When buckling-restrained braces are used instead of conventional braces, the structures showed more ductile behavior, especially in the 3-story structure.

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi;Fatemeh Arkavazi;Hamzeh Shakib
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.343-358
    • /
    • 2023
  • The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.

Seismic Retrofitting Effects of General Hospital Using Self-Centering Energy Dissipative Bracing System (자기복구형 에너지소산 가새시스템을 적용한 종합병원의 내진보강효과)

  • Kim, Taewan;Chu, Yurim;Bhandari, Diwas
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.159-167
    • /
    • 2019
  • 2016 Gyeongju and 2017 Pohang earthquakes led Koreans to acknowledge that the Korean peninsula is not an earthquake-free zone anymore. Among various buildings crucial to after-shock recovery, general hospital buildings, especially existing old ones, are very significant so seismic retrofitting of those must be an important issue. Self-centering energy dissipative(SCED) brace is one of retrofitting methods, which consists of tendon with restoring force and friction device capable of dissipating seismic energy. The strength of the SCED brace is that the tendon forces a structure to go back to the original position, which means residual drift can be negligible. The residual drift is a very important parameter to determine usableness of general hospitals after shock. To the contrary, buckling-restrained braces(BRB) are also a very effective way to retrofit because they can resist both compressive and tensile, but residual drift may exist when the steel core yields. On this background, the seismic retrofitting effect of general hospitals reinforced with SCED braces was investigated and compared to that of the BRD in this study. As a result, although the floor acceleration cannot be reduced, the story drift and residual drift, and the shear demand of walls significantly decreased. Consequently, seismic retrofitting by SCED braces are very effective for domestic low-rise general hospitals.

ANN based on forgetting factor for online model updating in substructure pseudo-dynamic hybrid simulation

  • Wang, Yan Hua;Lv, Jing;Wu, Jing;Wang, Cheng
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.63-75
    • /
    • 2020
  • Substructure pseudo-dynamic hybrid simulation (SPDHS) combining the advantages of physical experiments and numerical simulation has become an important testing method for evaluating the dynamic responses of structures. Various parameter identification methods have been proposed for online model updating. However, if there is large model gap between the assumed numerical models and the real models, the parameter identification methods will cause large prediction errors. This study presents an ANN (artificial neural network) method based on forgetting factor. During the SPDHS of model updating, a dynamic sample window is formed in each loading step with forgetting factor to keep balance between the new samples and historical ones. The effectiveness and anti-noise ability of this method are evaluated by numerical analysis of a six-story frame structure with BRBs (Buckling Restrained Brace). One BRB is simulated in OpenFresco as the experimental substructure, while the rest is modeled in MATLAB. The results show that ANN is able to present more hysteresis behaviors that do not exist in the initial assumed numerical models. It is demonstrated that the proposed method has good adaptability and prediction accuracy of restoring force even under different loading histories.