• Title/Summary/Keyword: buckling constraints

Search Result 84, Processing Time 0.024 seconds

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

Mass optimization of four bar linkage using genetic algorithms with dual bending and buckling constraints

  • Hassan, M.R.A.;Azid, I.A.;Ramasamy, M.;Kadesan, J.;Seetharamu, K.N.;Kwan, A.S.K.;Arunasalam, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.83-98
    • /
    • 2010
  • In this paper, the mass optimization of four bar linkages is carried out using genetic algorithms (GA) with single and dual constraints. The single constraint of bending stress and the dual constraints of bending and buckling stresses are imposed. From the movement response of the bar linkage mechanism, the analysis of the mechanism is developed using the combination of kinematics, kinetics, and finite element analysis (FEA). A penalty-based transformation technique is used to convert the constrained problem into an unconstrained one. Lastly, a detailed comparison on the effect of single constraint and of dual constraints is presented.

Buckling Constraints in Structural Optimization (구조물 최적화에 있어서의 좌굴 제약)

  • Chung, Young-Shik;Lee, Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.1-8
    • /
    • 1995
  • This work presents a new method to deal with buckling constraints. The mathematical optimization process of truss structures proposed earlier by the author has been proved to be the most rigorous method. The inclusion of buckling constraints, however, gives rise to a new problem The allowable compression stress of a member changes from one design iteration to another. This changing stress limit creates a good deal of noise in selecting active constraints and makes the solution process unstable. This problem can be overcome by introducing relaxation parameters. This work, however, aims at establishing a more rigorous method by containing the allowable compression stress in the left hand side of the associated constraint.

  • PDF

Critical buckling load optimization of the axially graded layered uniform columns

  • Alkan, Veysel
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.725-740
    • /
    • 2015
  • This study presents critical buckling load optimization of the axially graded layered uniform columns. In the first place, characteristic equations for the critical buckling loads for all boundary conditions are obtained using the transfer matrix method. Then, for each case, square of this equation is taken as a fitness function together with constraints. Due to explicitly unavailable objective function for the critical buckling loads as a function of segment length and volume fraction of the materials, especially for the column structures with higher segment numbers, initially, prescribed value is assumed for it and then the design variables satisfying constraints are searched using Differential Evolution (DE) optimization method coupled with eigen-value routine. For constraint handling, Exterior Penalty Function formulation is adapted to the optimization cycle. Different boundary conditions are considered. The results reveal that maximum increments in the critical buckling loads are attained about 20% for cantilevered and pinned-pinned end conditions and 18% for clamped-clamped case. Finally, the strongest column structure configurations will be determined. The scientific and statistical results confirmed efficiency, reliability and robustness of the Differential Evolution optimization method and it can be used in the similar problems which especially include transcendental functions.

A Study on the Minimum Weight Design of Stiffened Cylindrical Shells (보강원통셸의 최소중량화설계 연구)

  • 원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.630-648
    • /
    • 1992
  • The minimum weight design for simply-supported isotropic or symmetrically laminated stiffened cylindrical shells subjected to various loads (axial compression or combined loads) is studied by a nonlinear mathematical search algorithm. The minimum weight design in accomplished with the CONMIN optimizer by Vanderplaats. Several types of buckling modes with maximum allowable stresses and strains are included as constraints in the minimum weight design process, such as general buckling, panel buckling with either stingers or rings smeared out, local skin buckling, local crippling of stiffener segments, and general, panel and local skin buckling including stiffener rolling. The approach allows the consideration of various shapes of stiffening members. Rectangular, I, or T type stringers and rectangular rings are used for stiffened cylindrical shells. Several design examples are analyzed and compared with those in the previous literatures. The unstiffened glass/epoxy, graphite/epoxy(T300/5208), and graphite/epoxy aluminum honeycomb cylindrical shells and stiffened graphite/epoxy cyindrical shells under axial compression are analyzed through the present approach.

A Study on Robust Optimal Design of Laminated Composite Structures with Buckling Constraints (좌굴을 고려한 적층 복합재 구조의 강건 최적설계에 관한 연구)

  • Lee, Byeong-Chae;Lee, Jeong-Jun;Jeong, Do-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1483-1492
    • /
    • 2001
  • A robust optimization procedure is applied to determine the design of the laminated composite plates with buckling constraints. In order to investigate the variation effect to the whole performance of a structure, both design variables and system parameters are assumed as random variables about their nominal values. The robust optimization method has advantages that the mean value and the variation of the performance function are controlled simultaneously and the second order sensitivity information is not required. Considering the information of uncertainty, robust optima for the buckling load of the laminated composite plates with cut-out is obtained. The robustness of the structures is compared to that of the deterministic optimization using scaling factors.

Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates

  • Wu, Lanhe;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.259-274
    • /
    • 2003
  • In this paper, a novel numerical solution technique, the differential cubature method is employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-uniform boundary constraints based on the first order shear deformation theory. By using this method, the governing differential equations at each discrete point are transformed into sets of linear homogeneous algebraic equations. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Detailed formulation and implementation of this method are presented. The buckling parameters are calculated through solving a standard eigenvalue problem by subspace iterative method. Convergence and comparison studies are carried out to verify the reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are demonstrated through solving several sample plate buckling problems with various mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark values for further studies in the future.

A Study on Efficient Analysis of Delamination Buckling of Composite Structures (효율적인 복합재료구조물의 delamination buckling 해석기법에 관한 연구)

  • 황재웅;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.80-84
    • /
    • 2000
  • A mesh superposition technique is presented for an efficient analysis of structural behavior. Refined child mesh is superimposed over parent elements for the region of interest. It is a kind of adaptive mesh refinement, which allows locally refined mesh without introducing transition region or multipoint constraints. Proper boundary condition is necessary to avoid redundant rigid body motion and kinematic compatibility between neighbor elements. Delamination buckling analysis is conducted to demonstrate accuracy and efficiency of the present method.

  • PDF

Optimal Design of Stiffened Laminate Composite Cylindrical Shells (보강복합재료원통셸의 최적설계)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.12-18
    • /
    • 1998
  • The optimal design for stiffened laminate composite cylindrical shells under combined loads is studied by a nonlinear mathematical search algorithm. The optimal design is accomplished with the CONMIN. several types of buckling modes with maximum allowable stresses and strains are included as constraints in the optimal design process, such as general buckling, panel buckling with either stringers or rings smeared out, local skin buckling, local crippling of stiffener segments. Rectangular or T type stringers and rectangular rings are used for stiffened laminate composite cylindrical shells.

  • PDF

Optimum Design for Sizing and Shape of Truss Structures Using Harmony Search and Simulated Annealing (하모니 서치와 시뮬레이티드 어넬링을 사용한 트러스의 단면 및 형상 최적설계)

  • Kim, Bong Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In this paper, we present an optimization of truss structures subjected to stress, buckling, and natural frequency constraints. The main objective of the present study is to propose an efficient HA-SA algorithm for solving the truss optimization subject to multiple constraints. The procedure of hybrid HA-SA is a search method which a design values in harmony memory of harmony search are used as an initial value designs in simulated annealing search method. The efficient optimization of HA-SA is illustrated through several optimization examples. The examples of truss structures are used 10-Bar truss, 52-Bar truss (Dome), and 72-Bar truss for natural frequency constraints, and used 18-Bar truss and 47-Bar (Tower) truss for stress and buckling constraints. The optimum results are compared to those of different techniques. The numerical results are demonstrated the advantages of the HA-SA algorithm in truss optimization with multiple constraints.