• Title/Summary/Keyword: buckling characteristics

Search Result 465, Processing Time 0.027 seconds

Experimental study on innovative sections for cold formed steel beams

  • Dar, M.A.;Yusuf, M.;Dar, A.R.;Raju, J.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1599-1610
    • /
    • 2015
  • Cold Formed Steel members are widely used in today's construction industry. However the structural behavior of light gauge high strength cold formed steel sections characterized by various buckling modes are not yet fully understood. Because of their simple forming and easy connections, the commonly used cold formed sections for beams are C and Z. However both these sections suffer from certain buckling modes. To achieve much improved structural performance of cold formed sections for beams both in terms of strength and stiffness, it is important to either delay or completely eliminate their various modes of buckling. This paper presents various innovative sectional profiles and stiffening arrangements for cold formed steel beams which would successfully contribute in delaying or eliminating various modes of premature buckling, thus considerably improving the load carrying capacity as well as stiffness characteristics of such innovative cold formed sections compared to conventional cold formed steel sections commonly used for beams.

Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Hamouda, AMS
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.701-711
    • /
    • 2020
  • This papers studies nonlinear stability and post-buckling behaviors of geometrically imperfect metal foam doubly-curved shells with eccentrically stiffeners resting on elastic foundation. Metal foam is considered as porous material with uniform and non-uniform models. The doubly-curved porous shell is subjected to in-plane compressive loads as well as a transverse pressure leading to post-critical stability in nonlinear regime. The nonlinear governing equations are analytically solved with the help of Airy stress function to obtain the post-buckling load-deflection curves of the geometrically imperfect metal foam doubly-curved shell. Obtained results indicate the significance of porosity distribution, geometrical imperfection, foundation factors, stiffeners and geometrical parameters on post-buckling characteristics of porous doubly-curved shells.

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.

Buckling Analysis of Spherical Shells With Periodic Stiffness Distribution (주기적인 강성분포를 갖는 구형쉘의 좌굴해석)

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.77-84
    • /
    • 2004
  • Researches on spherical shell which is most usually applied have been completed by many investigators already and generalized numerical formula was derived. But the existent researches are limited to those on spherical shell with isotropic or orthotropic roof stiffness, periodic distribution of roof stiffness that can be caused by spherical and latticed roof system is not considered. Therefore, the object of this study is to develop a structural analysis program to analyze spherical shells that have periodicity of roof stiffness distribution caused by latticed roof of large space structure, grasp buckling characteristics and behavior of structure.

  • PDF

Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load

  • Bhagat, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1359-1389
    • /
    • 2016
  • Buckling and free vibration behavior of a laminated cylindrical panel exposed to non-uniform thermal load is addressed in the present study. The approach comprises of three portions, in the first portion, heat transfer analysis is carried out to compute the non-uniform temperature fields, whereas second portion consists of static analysis wherein stress fields due to thermal load is obtained, and the last portion consists of buckling and prestressed modal analyzes to capture the critical buckling temperature as well as first five natural frequencies and associated mode shapes. Finite element is used to perform the numerical investigation. The detailed parametric study is carried out to analyze the effect of nature of temperature variation across the panel, laminate sequence and structural boundary constraints on the buckling and free vibration behavior. The relation between the buckling temperature of the panel under uniform temperature field and non-uniform temperature field is established using magnification factor. Among four cases considered in this study for position of heat sources, highest magnification factor is observed at the forefront curved edge of the panel where heat source is placed. It is also observed that thermal buckling strength and buckling mode shapes are highly sensitive to nature of temperature field and the effect is significant for the above-mentioned temperature field. Furthermore, it is also observed that the panel with antisymmetric laminate has better buckling strength. Free vibration frequencies and the associated mode shapes are significantly influenced by the non-uniform temperature variations.

A Study on Buckling Characteristics of 2-way Grid Single-Layer Domes Considering Rigidity-Effect of Roofing Covering Materials (지붕마감재 강성효과를 고려한 2방향 그리드 단층돔의 좌굴특성에 관한 연구)

  • Park, Sang-Hoon;Suk, Chang-Mok;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.85-92
    • /
    • 2002
  • Two way grid single-layer domes are of great advantage in fabrication and construction because of the simple fact that they have only four members at each junction. But, from a point of view of mechanics, the rectangular latticed pattern gives rise to a nonuniform rigidity-distribution in the circumferential direction. If the equivalent rigidity is considered in the axial direction of members, the in-plane equivalent shearing rigidity depends only on the in-plane bending rigidity of members and its value is very small in comparison to that of the in-plane equivalent stretching rigidity. It has a tendency to decrease buckling -strength of dome considerably by external force. But it is possible to increase buckling strength by the use of roofing covering materials connected to framework. In a case like this, shearing rigidity of roofing material increases buckling strength of the overall structure and can be designed economically from the viewpoint of practice. Therefore, the purpose of this paper, in Lamella dome and rectangular latticed dome that are a set of 2-way grid dome, is to clarify the effects of roofing covering materials for increasing of buckling strength of overall dome. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. In case of Lamella domes which have nearly equal rigidity in the direction of circumference, the rigidity of roofing covering materials does not have a great influence on buckling-strength, but in rectangular latticed domes that has a clear periodicity of rigidity, the value of its buckling strength has a tendency to increase considerably with increasing rigidity of roofing covering materials 2. In case of rectangular latticed domes, as rise-span-ratio increases, models which is subjected to pressure -type-uniform loading than vertical-type-uniform loading are higher in the aspects of the increasing rate of buckling- strength according to the rate of shear reinforcement rigidity, but in case of Lamella dome, the condition of loading and rise-span-ratio do not have a great influence on the increasing rate of buckling strength according to the rate of shear reinforcement rigidity.

  • PDF

Characteristics of Buckling Load and Bifurcation in Accordance with Rise-span Ratio of Space Truss Considering Initial Imperfection (초기 불완전성을 고려한 공간 트러스의 분기좌굴과 라이즈-스팬 비에 따른 임계하중 특성)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.337-348
    • /
    • 2012
  • This study investigated the characteristics of bifurcation and the instability due to the initial imperfection of the space truss, which is sensitive to the initial conditions, and the calculated buckling load by the analysis of Eigen-values and the determinant of tangential stiffness. A two-free nodes model, a star dome, and a three-ring dome model were selected as case studies in order to examine the unstable phenomenon due to the sensitivity to Eigen mode, and the influence of the rise-span ratio and the load parameter on the buckling load were analyzed. The sensitivity to the imperfection of the two-free nodes model changed the critical path after reaching the limit point through the bifurcation mode, and the buckling load level was reduced by the increase in the amount of imperfection. The two sensitive buckling patterns for the model can be explained by investigating the displaced position of the free node, and the asymmetric Eigen mode was a major influence on the unstable behavior due to the initial imperfection. The sensitive mode was similar to the in-extensional mechanism basis of the simplified model. Since the rise-span ratio was higher, the effect of local buckling is more prominent than the global buckling in the star dome, and bifurcation on the equilibrium path occurring as the value of the load parameter was higher. Additionally, the buckling load levels of the star dome and the three-ring model were about 50-70% and 80-90% of the limit point, respectively.

Buckling of FGM elliptical cylindrical shell under follower lateral pressure

  • Moradi, Alireza;Poorveis, Davood;Khajehdezfuly, Amin
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.175-191
    • /
    • 2022
  • A review of previous studies shows that although there is a considerable difference between buckling loads of structures under follower and non-follower lateral loads, only the buckling load of FGM elliptical cylindrical shell under non-follower lateral load was investigated in the literature. This study is the first to obtain the buckling load of elliptical FGM cylindrical shells under follower lateral load and also make a comparison between buckling loads of elliptical FGM cylindrical shells under follower and non-follower lateral loads. Moreover, this research is the first one to derive the load potential function of elliptical cylindrical shell. In this regard, the FGM cylindrical elliptical shell was modeled using the semi-analytical finite strip method and based on the First Shear Deformation Theory (FSDT). The shell is discretized by strip elements aligned in the longitudinal direction. The Lagrangian and harmonic shape functions were considered in the circumference and longitudinal directions, respectively. The buckling pressure of the shell under follower and non-follower lateral loads was obtained from eigenvalue problem. The results obtained from the model were compared with those presented in the literature to evaluate the validity of the model. A comparison index was defined to compare the buckling loads of the shell under follower and non-follower lateral load. A parametric study was carried out to investigate the effects of material properties and shell geometry characteristics on the comparison index. For the elliptical cylindrical shells with length-to-radius ratio greater than 16 and major-to-minor axis ratio greater than 0.6, the comparison index reaches to more than 20 percent which is significant. Moreover, the maximum difference is about 30 percent in some cases. The results obtained from the parametric study indicate that the buckling load of long elliptical cylindrical shell under non-follower load is not reliable.

Elastic Buckling Characteristics of Corrugated Pipe Made of Orthotropic Composite Material (직교 이방성 복합재료로 구성된 파형 관로의 탄성좌굴 특성)

  • Han, Taek Hee;Kim, Tae Yeon;Han, Keum Ho;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.77-84
    • /
    • 2007
  • The elastic buckling strength of a corrugated pipe made of orthotropic material was evaluated. The height and length of a corrugated wave and the thickness of the pipe were considered as factors affecting the buckling strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness were considered as parameters affecting on the buckling strength of a pipe made of orthotropic material. Buckling strengths of various corrugated pipes with different shapes and stiffness ratio were evaluated by FE analyses. And a formula to estimate the elastic buckling strength was suggested by regression of FE analysis results. Analysis results show that a corrugated pipe has superior buckling strength to a general flat pipe and the suggested formula estimates accurate buckling strength of the corrugated pipe made of orthotropic material.