• 제목/요약/키워드: buckling capacity

검색결과 393건 처리시간 0.021초

The cyclic behavior of steel-polyoxymethylene composite braces

  • Demir, Serhat
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.591-600
    • /
    • 2019
  • Steel tubular buckling controlled braces are well known as being simple, practical and cost-effective lateral force resisting systems. Although these system features have gained the attention of the researchers over the last decade, steel tubular buckling controlled braces currently have limited application. Indeed, only a few steel tubes tightly encased within each other exist in the steel industry. In this paper, a new and practical design method is proposed in order to better promote the widespeared application for current steel tubular buckling controlled brace applications. In order to reach this goal, a holed-adapter made with polyoxymethylene adaptable to all round and square steel sections, was developed to use as infiller. The research program presents designing, producing and displacement controlled cyclic loading tests of a conventional tubular brace and a buckling controlled composite brace. In addition, numerical analysis was carried out to compare the experimental results. As a result of the experimental studies, buckling was controlled up to 0.88 % drift ratio and the energy dissipation capacity of the conventional tubular brace increased 1.46 times due to the proposed design. The main conclusion of this research is that polyoxymethylene is a highly suitable material for the production of steel tubular buckling controlled braces.

제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구 (A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs)

  • 길흥배;이승록;이학은;이필구
    • 한국강구조학회 논문집
    • /
    • 제15권5호통권66호
    • /
    • pp.591-601
    • /
    • 2003
  • 파형강판은 파형 형상으로 가공된 강판으로 높은 면내, 면외 방향의 강성을 갖으며, 건물, 교량 등으로 적용도가 높아지고 있다. 파형강판을 플레이트 거더나 프리스트레스트 박스거더교의 복부판으로 적용하면, 파형강판의 Accordion효과에 의해 플랜지가 휨응력을 복부판이 전단응력을 대부분 지지하는 효율적인 구조를 얻을 수 있다. 전단응력을 받는 파형 강판은 전체좌굴, 국부좌굴, 및 연성좌굴에 의해 내하력을 상실할 수 있다. 좌굴 강도에 미치는 기하학적인 인자들의 영향을 파악하기 위하여 유한요소해석법을 이용한 좌굴해석이 수행되었다. 해석결과는 복부판의 좌굴강도와 좌굴형상이 개개 인자들에 의존할 뿐만 아니라 패널의 세장비와 같은 두 개의 변수가 상호작용하는 복합변수에 의존하는 것을 보여주었다.

제형파형강판 복부판의 탄성 연성전단좌굴 거동 (Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs)

  • 이종원;길흥배;이학은
    • 한국강구조학회 논문집
    • /
    • 제17권6호통권79호
    • /
    • pp.707-715
    • /
    • 2005
  • 파형강판은 파형 형상으로 가공된 강판으로 높은 면내, 면외 방향의 강성을 갖으며, 건물, 교량 등으로 적용도가 높아지고 있다. 파형강판을 플레이트 거더나 프리스트레스트 박스거더교의 복부판으로 적용하면, 파형강판의 아코디언 효과에 의해 플랜지가 휨응력을 복부판이 전단응력을 대부분 지지하는 효율적인 구조를 얻을 수 있다. 전단응력을 받는 파형 강판은 전체좌굴, 국부좌굴 및 연성좌굴에 의해 내하력을 상실할 수 있다. 세 가지 좌굴 모드 중 연성 좌굴에 대한 명확한 분석은 거의 이루어지지 않았고 보수적인 강도 예측을 위한 강도 감소식이 사용되고 있다. 따라서 본 연구에서는 연성 좌굴 거동에 미치는 기하학적인 인자들의 영향을 파악하기 위하여 유한요소해석법을 이용한 좌굴해석이 수행되었다. 해석 결과는 연성 좌굴은 패널의 세장비와 북부판 높이 두께비의 복합변수에 의존하는 것으로 나타났다.

단층 래티스 돔의 단면산정에 있어서의 형상초기불완전의 영향 (Effects of geometrical initial imperfection in proportioning member sections of single layer reticulated dome)

  • 김종민;황보석;한상을;권택진
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.83-88
    • /
    • 2004
  • First author proposed a proportioning method for member sections of a single layer reticulated dome subjected to uniform and non-uniform load without any geometrical initial imperfection, and discussed the validity and effectiveness of the method which was based on linear buckling stress and a knock down factor. However, buckling of a single layer reticulated dome is strongly affected by initial imperfection. It is well known that geometrical initial imperfections reduce the nonlinear buckling capacity of a single layer raticulated dome. Thus, structural engineers may be recommended to reflect the effects of geometrical initial imperfections in proportioning member sections. In this paper, firstly, the presented proportioning method by first author is applied to dome without consideration of any imperfections and the thickness and diameter of each member are determined. Secondly, the load bearing capacities of the proportioned domes are checked with the imperfection, by the inelastic buckling analysis.

  • PDF

박벽 복합재료 보의 횡-비틀림 좌굴 해석 (Lateral-torsional buckling analysis of thin-walled composite beam)

  • 김영빈;이재홍
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.489-496
    • /
    • 2002
  • The lateral buckling of a laminated composite beam is studied. A general analytical model applicable to the lateral buckling of a composite beam subjected to various types of loadings is derived. This model is based on the classical lamination theory, and accounts for the material coupling for arbitrary laminate stacking sequence configuration and various boundary conditions. The effects of the location of applied loading on the buckling capacity are also included in the analysis. A displace-based one-dimensional finite element model is developed to predict critical loads and corresponding buckling modes for a thin-walled composite beam with arbitrary boundary conditions. Numerical results are obtained for thin-walled composites under central point load, uniformly distributed load, and pure bending with angle-ply and laminates. The effects of fiber orientation location of applied load, and types of loads on the critical buckling loads are parametrically studied.

  • PDF

Degradation of buckling capacity of slender concrete-filled double skin steel tubular columns due to interface compliance

  • Cas, Bojan;Schnabl, Simon
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.643-650
    • /
    • 2022
  • In this paper a novel mathematical model and its analytical solution of global buckling behaviour of slender elastic concrete-filled double-skin tubular (CFDST) columns with finite compliance between the steel tubes and a sandwiched concrete core is derived for the first time. The model is capable of investigating the influence of various basic parameters on critical buckling loads of CFDST columns. It is shown that the elastic buckling load of circular and slender CFDST columns is independent on longitudinal contact stiffness, but, on the other hand, it can be considerably dependent on circumferential contact stiffness. The increasing of the circumferential contact stiffness increases the critical buckling load. Furthermore, it is shown that analytical results can agree well with the experimental and numerical results if the calibrated values of circumferential contact stiffness are used in the calculations. Moreover, it is shown that the contact between the steel tubes and a sandwiched concrete core of tested large-scale CFDST columns used in the comparison is relatively weak. Finally, the proposed analytical results can be used as a benchmark solution.

Buckling behavior of bundled inclined columns: Experimental study and design code verification

  • Moussa Leblouba;Samer Barakat;Raghad Awad;Saif Uddin Al-Khaled;Abdulrahman Metawa;Abdul Saboor Karzad
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.183-197
    • /
    • 2024
  • Not all structural columns maintain a vertical orientation. Several contemporary building structures have inclined columns, introducing distinct challenges, particularly in buckling behavior. This study examines the buckling behavior of inclined, thin-walled steel bundled columns, differing from typical vertical columns. Using specimens with three tubes welded to plates linearly aligned at the top and triangularly at the bottom, tests indicated that buckling capacity increases with tube wall thickness and diameter but decreases with column height. Inclined tubes in bundled columns showed improved buckling resistance over vertical ones. Results were verified against standard steel design guidelines to assess their predictive accuracy.

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members

  • Wu, Jinzhi;Zheng, Jianhua;Sun, Guojun;Chang, Xinquan
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.11-28
    • /
    • 2022
  • This paper considers the combination of cyclic and axial loads to investigate the hysteretic performance of H-section 6061-T6 aluminum alloy members. The hysteretic performance of aluminum alloy members is the basis for the seismic performance of aluminum alloy structures. Despite the prevalence of aluminum alloy reticulated shells structures worldwide, research into the seismic performance of aluminum alloy structures remains inadequate. To address this deficiency, we design and conduct cyclic axial load testing of three H-section members based on a reliable testing system. The influence of slenderness ratios and bending direction on the failure form, bearing capacity, and stiffness degradation of each member are analyzed. The experiment results show that overall buckling dominates the failure mechanism of all test members before local buckling occurs. As the load increases after overall buckling, the plasticity of the member develops, finally leading to local buckling and fracture failure. The results illustrate that the plasticity development of the local buckling position is the main reason for the stiffness degradation and failure of the member. Additionally, with the increase of the slenderness ratio, the energy-dissipation capacity and stiffness of the member decrease significantly. Simultaneously, a finite element model based on the Chaboche hybrid strengthening model is established according to the experiment, and the rationality of the constitutive model and validity of the finite element simulation method are verified. The parameter analysis of twenty-four members with different sections, slenderness ratios, bending directions, and boundary conditions are also carried out. Results show that the section size and boundary condition of the member have a significant influence on stiffness degradation and energy dissipation capacity. Based on the above, the appropriate material constitutive relationship and analysis method of H-section aluminum alloy members under cyclic loading are determined, providing a reference for the seismic design of aluminum alloy structures.

철골-콘크리트 합성기둥의 후좌굴 거동에 관한 해석 연구 (Finite Element Post-buckling Analysis of Steel-Concrete Composite Column)

  • 오명호;김명한;김상대
    • 한국강구조학회 논문집
    • /
    • 제19권6호
    • /
    • pp.725-735
    • /
    • 2007
  • 이 연구에서는 두께가 얇은 강판을 가진 철골-콘크리트 합성기둥에서 강판의 국부 좌굴 강도 및 국부 좌굴 후 강도에 대한 해석적인 연구를 수행하였다. 콘크리트 충전에 의하여 합성기둥에서 판의 국부 좌굴 성능이 향상되는 것을 경계 조건을 조정하여 해석에 반영하였고, 탄성 좌굴 해석을 통해 한계 폭-두께비를 제안하였다. 또한 초기 처짐 및 잔류 응력을 해석에 반영하여, 다양한 폭-두께비에 해당하는 평판의 비선형 유한 요소 해석을 통해 초기 국부 좌굴 강도 및 좌굴 후 강도를 산정하였다. 이러한 비선형 해석 결과를 이용하여 판의 유효 폭을 산정하였고, 유효 폭을 이용한 철골-콘크리트 합성기둥의 최대 압축 내력식을 제안하였다. 제안식에 의한 계산된 값과 기존의 실험결과를 비교함으로서 제안식의 타당성을 검증하였다.