• Title/Summary/Keyword: buck-boost

Search Result 343, Processing Time 0.022 seconds

Wind Energy Charger Using Breaking and Power Conversation Switch (제동 및 전력변환 겸용 스위치를 이용한 풍력발전용 충전장치)

  • Ju, Hong-Ju;Lee, Hwa-Chun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.80-82
    • /
    • 2007
  • In this paper, we proposed new maximum electric power tracking algorithm by composing Buck-boost chopper circuit to charge electric power from wind energy generator which is under low and high wind velocity. The break function is also proposed with the existed buck-boost chopper switch. We made a proto-type as a lab level to verify appropriateness of using proposed circuit.

  • PDF

Dynamics of the Current-Mode Controlled Boost and Buck Converters Connected to an Ill-Conditioned Source (부적합한 전원이 연결된 전류제어 승압형 변환기와 전류제어 강압형 동특성)

  • Kim, Yeonjung;Choi, Byungcho
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.100-101
    • /
    • 2017
  • This paper presents the dynamics of the current-mode controlled buck and boost converters, which are both connected to an ill-conditioned source. This paper investigates the origin of potential instability and demonstrates internal/external dynamics of the converters under adverse interactions with the source.

  • PDF

Switching Frequency Adjustment of Bidirectional Buck+Boost Converter for Increasing Output Power of a Battery Simulator for an Electric Vehicle (전기차용 배터리 시뮬레이터의 출력 향상을 위한 양방향 Buck+Boost 컨버터의 스위칭 주파수 변경)

  • Kim, Yoon-Jae;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.133-134
    • /
    • 2015
  • 본 논문은 배터리 시뮬레이터용 양방향 DC-DC 컨버터에서 스위칭 주파수를 조절하여 넓은 출력 전압 범위에서 출력을 향상시킴을 보였다. 전 부하 영역에서 ZVS를 구현하였고, Psim 시뮬레이션을 통해 검증하였다.

  • PDF

The MPPT Control Method of The Seaflow Generation by Using Fuzzy Controller in boost Converter (boost 컨버터에 퍼지제어기를 적용한 조류 발전의 MPPT제어)

  • Kim, Cheon-Kyu;Kang, Hyoung-Seok;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.131-133
    • /
    • 2008
  • In this paper, the control method of extracting maximum power from the seaflow energy is proposed. This Paper describes a variable speed seaflow generation system with Permanent magnet synchronous motor, bridge rectifier, buck-boost converter and Fuzzy controller. In this Proposed seaflow generation system, the duty ratio of buck-boost converter is controlled by the fuzzy controller. An advantage of MPPT control method presented in this paper don't need to use the characteristic of seaflow turbine at various seaflow speed and measure the tidal speed and the rotating speed of tidal turbine. Therefore, the Proposed system has the characteristics of lower cost, higher efficiency and lower complexity. The effectiveness of algorithm is simulated based on Matlab Simulink.

  • PDF

Low-Power Buck-Boost Converter for Multi-Input Energy Harvesting Systems (다중입력 에너지 하베스팅 시스템을 위한 저전력 벅-부스트 변환기)

  • Jo, Gil-Je;Kwak, Myoung-Jin;Im, Ju-An;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.31-34
    • /
    • 2018
  • This paper presents a low-power buck-boost converter for multi-input energy harvesting systems. The designed circuit combines the energy harvested from three input channels in real time and stores it in a storage capacitor. The structure of the buck-boost converter is simplified by using one external inductor and applying time division technique using an arbiter. In addition, to improve the efficiency of the system, the controller circuits of the converter are designed so that current consumption is minimized. The proposed circuit is designed with $0.35{\mu}m$ CMOS process. Simulation results show that the designed circuit consumes up to 490nA of current when all three input channels are active, and the maximum power efficiency is 92%. The chip area of the designed circuit is $1310{\mu}m{\times}1100{\mu}m$.

  • PDF

A Design of Three Switch Buck-Boost Converter (3개의 스위치를 이용한 벅-부스트 컨버터 설계)

  • Koo, Yong-Seo;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.82-89
    • /
    • 2010
  • In this paper, a buck-boost converter using three DTMOS(Dynamic Threshold Voltage MOSFET) switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. DTMOS with low on-resistance is designed to decrease conduction loss. The threshold voltage of DTMOS drops as the gate voltage increases, resulting in a much higher current handling capability than standard MOSFET. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.2MHz oscillation frequency, and maximum efficiency 90%. Moreover, the LDO(low drop-out) is designed to increase the converting efficiency at the standby mode below 1mA.

LabVIEW-based Remote Laboratory Experiments for a Multi-mode Single-leg Converter

  • Bayhan, Sertac
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1069-1078
    • /
    • 2014
  • This study presents the design and implementation of a web-based remote laboratory for a multi-mode single-leg power converter, which is a topic in advanced power electronics course. The proposed laboratory includes an experimental test rig with a multi-mode single-leg power converter and its driver circuits, a measurement board, a control platform, and a LabVIEW-based user interface program that is operated in the server computer. Given that the proposed web-based remote laboratory is based on client/server architecture, the experimental test rig can be controlled by a client computer with Internet connection and a standard web browser. Although the multi-mode single-leg power converter can work at four different modes (main boost, buck-boost, boost-boost, and battery boost modes), only the buck-boost mode is used in the experiment because of page limit. Users can choose the control structure, control parameters, and reference values, as well as obtain graphical results from the user interface software. Consequently, the feedbacks received from students who conducted remote laboratory studies indicate that the proposed laboratory is a useful tool for both remote and traditional education.

A Study on the Step-Up Converter with the New Topology Method (새로운 Topology 방식의 스텝 업(Step-Up) 컨버터에 관한 연구)

  • Jung, Hai-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.889-896
    • /
    • 2020
  • In general, there are various types of boost converters such as Boost converters, Buck-Boost converters, Flyback converters, Push-Pull converters, etc. Among them, Boost converters are the most widely used and step up converters in a very simple form. However, Boost converter has DCM mode operation, big ripple problem and RHPZ problem. In order to solve these problems, a converter to which the new topology was applied was presented, but among them, the KY converter improved the Boost converter's DCM mode operation, the big ripple problem and the RHPZ problem. However, the conventional KY converter has a drawback that the voltage gain is relatively lower than that of the Boost converter. Therefore, in this paper, we proposed a new KY converter that solves the problem of low voltage gain while having the advantages of the conventional KY converter.

Study on the control method and operation characteristics of BUCK-BOOST Converter for ZVS and ZCS (ZVS과 ZCS을 이용한 BUCK-BOOST콘버어터의 제어방식과 동작특성에 관한 연구)

  • Kim, Hyun-Soo;Park, Sung-Jun;Byun, Young-Bok;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.195-197
    • /
    • 1995
  • In this paper, for a constant switching frequency, the configuration and the control strategy of the resonant buck-boost type converter are proposed by the combination of zero voltage switching(ZVS) and zero current switching(ZCS) with PWM method. Also, in the configuration of power control circuit, transformer is not used in the viewpoint of economy. And the circuit has fewer power switching elements than a general resonant power converter, simulation results and experiments make show the advantages mentioned.

  • PDF

Utility Interactive Photovoltaic Generation System Using Discontinuous Mode Buck-Boost Chopper (불연속모드 승강압초퍼를 이용한 계통연계형 태양광발전 시스템)

  • 김영철;이현우;서기영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.325-331
    • /
    • 1999
  • In a utility interactive photovoltaic generation system. a PWM inverter is used for the connection between the p photovoltaic arrays and the utility. The dc current becomes pulsated when the conventional inverter system operates i in the continuous current mode and de current pulsation causes the distortion of the accurrent waveform. This paper p presents the reduced pulsation of de input current by operating the inverter with buck-boost chopper in the d discontinuous conduction mode. The dc current which contains harmonic component is analyzed by means of s separating into two terms of a ripple component and a direct component. The constant dc current without p pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provides a sinusoidal ac c current for domestic loads and the utility line with unity power factor.

  • PDF