• Title/Summary/Keyword: bubbles

Search Result 882, Processing Time 0.029 seconds

A Study on Bubbles Generated from Water Plasma for Application of DAF Process

  • Park, Jun-Seok;Yu, Seung-Yeol;Yu, Seung-Min;Hong, Eun-Jeong;Seok, Dong-Chan;Hong, Yong-Cheol;No, Tae-Hyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.232-232
    • /
    • 2011
  • DAF는 기존 침전 공정에 비해 뛰어난 정수 품질과 빠른 처리 시간으로 차세대 정수 공정으로 각광 받고 있다. DAF는 기포 생성 방법에 따라 용존 공기 부상법, 분산 공기 부상법, 진공 부상법, 전해 부상법, 미생물학적 부상법 등이 있다. 이 중 가장 많이 쓰이는 방식은 용존 공기 부상법으로, 과포화 상태의 기체와 액체의 혼합액을 압력을 급격히 감소시켜 기포를 발생 시키는 방법이다. 이 방법은 기포의 발생은 많지만 장비의 크기가 거대하고 시설제조 비용이 많이 드는 단점이 있다. 수중에서 발생되는 플라즈마는 그 구조와 메카니즘에 따라 생성되는 버블의 양을 제어할 수 있음을 확인하였다. 모세관 형태의 전극을 이용한 수중 방전은 전원 공급 장치만 있다면 적은 공간으로도 효과적으로 기포를 생성 할 수 있기 때문에, 수중 방전을 이용하여 기포 발생 후 DAF에 적용 가능한지 알아보고자 한다. DAF공정에서 필요한 요인으로는 기포의 크기, 개수, 성분 물질 등이 있는데, 그 중 가장 핵심은 기포의 크기 이다. 그래서 간단한 전원 장치와 리액터 제작 후 방전에 최적화 된 전극으로 기포를 발생시켜 기포의 크기를 측정하였다. 기포의 크기는 전극의 직경과 방전공간의 비율에 따라 제어가 가능함을 확인하였고 평균 기포의 크기는 약 50 ${\mu}m$로서, DAF에 적용 할 수 있는 크기이다. 일반적으로 기포의 사이즈가 작을수록 입자 제거율이 높은데, 실제 DAF공정에서 사용되는 기포의 사이즈는 80 ${\mu}m$정도 이다. 따라서 개발된 기포 발생장치를 DAF 공정에 응용한다면 높은 효율을 가질 것으로 판단된다.

  • PDF

Diagnostic Studies of Plasmas in Saline Solutions: the Frequency Effects and the Electrode Erosion Mechanism

  • Hsu, Cheng-Che
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.16-16
    • /
    • 2011
  • Plasmas in saline solutions receive considerable attention in recent years. How the operating parameters influence the plasma characteristics and how the electrode erosion occurs have been topics that require further study. In the first part of this talk, the effect of the frequency on the plasmas characteristics in saline solution driven by 50~1000 Hz AC power will be presented. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, one mm-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in the frequency, it shows the jetting mode, in which many smaller bubbles are continuous formed and jetted away from the electrode surface. Multiple mechanisms that are potentially responsible to such a change in bubble dynamics have been proposed and the dominant mechanism is identified. From the Stark broadening of the hydrogen optical emission line, electron densities in both modes are estimated. It shows clearly that the driving frequency greatly influences the bubble dynamics, which in turn alters the plasma behavior. In the second part, the study of the erosion of a tungsten electrode immersed in saline solution under conditions suitable for bio-medical applications is presented. The electrode is immersed in 0.1 M saline solution and is positively or negatively biased using a DC power source up to 600 V. It is identified that when the electrode is positively biased, erosion by the surface electrolytic oxidation is the dominant mechanism with an applied voltage below 150 V. An increase in the applied voltage leads to the formation of the plasma and the damage by the plasma and the thermal effect becomes more prominent. The formation of the gas film at the electrode surface leads to the formation of the plasma and hinders the electrolytic erosion. In the negatively-biased electrode, no electrolytic oxidation is seen and the damage is mostly likely due to the plasma erosion and the thermal effect.

  • PDF

Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant (새로운 인계 난연제 합성과 이를 이용한 경질 폴리우레탄 폼의 난연성 및 물성 분석)

  • Lee, Byoung Jun;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, we compared and analyzed the flame retardancy and mechanical properties of three different rigid polyurethane foams (RPUF) containing noble non-halogen phosphorus flame retardant (BHP-RPUF) or halogen-phosphorus flame retardant (TCPP-RPUF) or no flame retardant material (Pure-RPUF). The noble phosphorus-based flame retardant, bis(3-(3-hydroxypropoxy)propyl) phenyl phosphate (BHP), was synthesized by the reaction between disodium phenyl phosphate and 3-chloro-1-propanol. Through universal testing machine (UTM) experiments, the compressive strength of BHP-RPUF was similar to that of TCPP-RPUF. From the result of foam morphology analysis, it was confirmed that BHP-RPUF has the lowest thermal conductivity of $0.023W/m{\cdot}K$. We also measured the size of air bubbles using reaction velocity and SEM, and analyzed how they affect the thermal conductivity. In addition, the heat-resisting property was investigated through TGA analysis. The limited oxygen index (LOI) test confirmed that BHP had the ability to increase the flame retardancy of RPUF.

Numerical Analysis of NACA64-418 Airfoil with Blunt Trailing Edge

  • Yoo, Hong-Seok;Lee, Jang-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.493-499
    • /
    • 2015
  • The aerodynamic performance of blunt trailing edge airfoils was investigated. The flow fields around the modified NACA64-418, which consists of the tip blade of the wind turbine and Mexico model of IEA wind, were analyzed. To imitate the repaired airfoil, the original NACA64-418 airfoil, a cambered airfoil, is modified by the adding thickness method, which is accomplished by adding the thickness symmetrically to both sides of the camber line. The thickness ratio of the blunt trailing edge of the modified airfoil, $t_{TE}/t_{max}$, is newly defined to analyze the effects of the blunt trailing edge. The shape functions describing the upper and lower surfaces of the modified NACA64-418 with blunt trailing edge are obtained from the curve fitting of the least square method. To verify the accuracy of the present numerical analysis, the results are first compared with the experimental data of NACA64-418 with high Reynolds number, $Re=6{\times}10^6$, measured in the Langley low-turbulence pressure tunnel. Then, the aerodynamic performance of the modified NACA64-418 is analyzed. The numerical results show that the drag increases, but the lift increases insignificantly, as the trailing edge of the airfoil is thickened. Re-circulation bubbles also develop and increase gradually in size as the thickness ratio of the trailing edge is increased. These re-circulations result in an increase in the drag of the airfoil. The pressure distributions around the modified NACA64-418 are similar, regardless of the thickness ratio of the blunt trailing edge.

Experimental Study on the Performance of a Bidirectional Hybrid Piezoelectric-Hydraulic Actuator

  • Jin, Xiao Long;Ha, Ngoc San;Li, Yong Zhe;Goo, Nam Seo;Woo, Jangmi;Ko, Han Seo;Kim, Tae Heun;Lee, Chang Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2015
  • The piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by a piezo-stack coupled to a conventional hydraulic cylinder. The actuator is of compact size, but can produce a moderate energy output. Such hybrid actuators are currently being researched and developed in many industrialized countries due to the requirement for high performance and compact flight systems. In a previous study, we designed and manufactured a unidirectional hybrid actuator. However, the blocking force was not as high as expected. Therefore, in this study, we redesigned the pump chamber and hydraulic cylinder and also improved the system by removing the air bubbles. Two different types of piezo-stacks were used. In order to achieve bidirectional capabilities in the actuator, commercial solenoid valves were used to control the direction of the output cylinder. Experimental testing of the actuator in unidirectional and bidirectional modes was performed to examine performance issues related to driving frequency, bias pressure, reed valve thickness, etc. The results showed that the maximum blocking force was measured as 970.2N when the frequency was 185Hz.

Effect of the Internal Clogging on the Kink Zone of PBD (꺾임이 발생한 연직배수재의 내부 막힘현상)

  • Kim, Rae-Hyun;Hong, Sung-Jin;Kim, Jae-Jeong;Choi, Yong-Min;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.729-736
    • /
    • 2009
  • Several well resistance effects induced by bending, confining stress, temperature, bubbles, and apparent opening size have been considered and researched for the reasonable PBD design. The effect of apparent opening size(AOS), however, was not extensively studied and the clogging effect by AOS was not clearly researched. In this paper, the slurry consolidation test which 4 types of PBD are installed in large slurry consolidometer($H{\times}D$, $2.0m{\times}1.2m$) is performed to investigate the clogging effect by filter's AOS. The results show that the internal clogging is observed all types of PBD, and a quantity of inflowed soil particles are increased at the lower part of PBD and the kink zone. In addition, the internal clogging phenomenon does not relate with the shape and size of PBD. In filter's AOS test, it was easily observed that soil particles bigger than AOS of tested filter passed PBD filter by SEM. This paper demonstrates that the reduction of discharge capability may be accelerated by internal clogging at the kink zone.

  • PDF

Analysis of the Relationship between Unconfined Compression Strength and Shear Strength of Frozen Soils (동결토의 일축압축강도와 전단강도 상관관계 분석에 관한 연구)

  • Kang, Jae-Mo;Lee, Jang-Guen;Lee, Joonyong;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • The mechanical behavior of frozen soils is different from that of unfrozen soils due to the phase change between water and ice. The strength characteristics of frozen soils are governed by the intrinsic material properties such as grain size, ice and water content, air bubbles, and by externally imposed testing conditions such as temperature, freezing time, and strain rate. Especially, the strength of the frozen soils is generally higher than that of unfrozen soils due to ice binding capacity with soil particles, and is strongly affected by a highly complex interaction between the solid soil skeleton and the pore matrix, composed of ice and unfrozen water. In this study, the direct shear test and unconfined compression test are carried out inside of a large-scaled freezing chamber, and the relationships between cohesion and unconfined compression strength under various freezing temperature conditions are discussed.

Effects of Pulsating Jet Blowing on Stall Control of Two Dimensional Elliptic Airfoil (이차원 타원형 날개꼴의 실속제어에서 간헐제트 브로잉의 효과)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jeong, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.1-8
    • /
    • 2005
  • This paper explored the effects of separation control through the use of pulsating jet blowing on a two dimensional elliptical airfoil. To develop an active control technique of flow separation, a flow control actuator utilizing continuous/pulsed jet of pressurized air was designed and installed in a wind tunnel testing model of elliptic wing. PIV measurement and flow visualization of the wing near field were conducted to access the feasibility and effectiveness of the pulsed jet blowing on controlling the stall of the elliptical wing in subsonic flow. PIV experimental results show that separation control can provide significant reduction in turbulent flow wake and separation bubbles by jet blowing. The pulsating jet blowing is more effective on the separation control than continuous one. Increased jet frequency suppressed the turbulent separated flow wake effectively at even higher AOAs.

Changes of Nutrients in Media and Mycelia on Liquid Spawn Culture of Lentinula edodes (표고 액체종균 배양시 배지와 균사체의 양분변화)

  • Shim, Kyu-Kwang;Yoo, Young-Jin;Koo, Chang-Duck;Kim, Myung-Kon
    • The Korean Journal of Mycology
    • /
    • v.42 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • Lentinula edodes liquid spawn growth under explosive aeration (supplying air with tiny bubbles) and soybean meal addition to liquid culture medium were investigated in terms of mycelial growth and residual free sugar content. The two treatments were effective for homogeneous culturing of mycelial spawn and for separating colonies during multiplication after an exponential growth period without limiting sustaining nitrogen nutrients. The mycelial growth and carbon dioxide concentration were greatest on the 13th day since the inoculation. At 12th day, however, free sugars were almost depleted in the upper part of the liquid medium. Total nitrogen content within precipitated mycelia was the highest at the 13th day. Chitin and sucrose contents in the mycelia were the highest at the 18th day, but ergosterol content became highest at 22 days. These results suggest that Lentinula edodes liquid spawn is ready in 18 days after inoculation.

Enhancement of $NH_3$ Bubble Absorption Performance in Binary Nanofluids (이성분 나노유체에서의 암모니아 기포 흡수 성능 향상)

  • Jung Jun Young;Kim Jin-Kyeong;Kang Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.312-317
    • /
    • 2005
  • The objectives of this paper are to study the absorption characteristics of $NH_3$ bubbles in the binary nanofluids and to quantify the effects of surfactants and nano-particles on the bubble absorption performance. 2-Ethyl-1-Hexanol, n-Octanol, and 2-Octanol are used as the surfactants and nano-sized $Al_{2}O_3$ and Cu particles are added to make the binary nanofluids into $NH_3/H_{2}O$ solution. The concentration of $NH_3$ solution ($x_s$), the concentration of surfactants ($x_{SA}$), and the mass fraction of nano-particles ($w_{np}$) are considered as key parameters. The experimented ranges of $x_s,\;x_{SA},\;and\;w_{np}$ are $0{\sim}17.92\%,\;0{\sim}1,500\;ppm\;and\;0{\sim}0.2\%$, respectively. The absorption rates are calculated by measuring initial and final weights of test section and exposed time. In addition, the bubble absorption processes are visualized using the shadow graphic method. The results show that the absorption performance is significantly enhanced up to 4 times by adding the surfactants and up to 3 times in the binary nanofluids.