References
- Kang, Y. T., Kim, J., Kim, J.-K. and Choi, C. K., 2003, Comparisons of mechanical, chemical and nano technologies for absorption applications, Proceeding of the International Seminar on Thermally Powered Sorption Technology, Fukuoka, Japan, pp. 69-77
- Kang, Y. T., Akisawa, A. and Kashiwagi, T., 2000, Analytical investigation of two different absorption modes: Falling film and Bubble types, International Journal of Refrigeration, Vol. 23, pp. 430-443 https://doi.org/10.1016/S0140-7007(99)00075-4
-
Moller, R. and Knoche, K F., 1996, Surfactants with
$NH_{3}-H_{2}O$ , International Journal of Refrigeration, Vol. 19, pp. 317 - 321 https://doi.org/10.1016/S0140-7007(96)00035-7 - Nordgren, M. and Setterwall, F., 1996, An experimental study of the effects of surfac-tant on a falling liquid film, International Journal of Refrigeration, Vol. 19, pp. 310-316 https://doi.org/10.1016/S0140-7007(96)00033-3
-
Kang, Y. T. and Kashiwagi, T., 2002, Heat transfer enhancement by Marangoni convection in the
$NH_{3}-H_{2}O$ absorption process, International Journal of Refrigeration, Vol. 25, pp. 780-788 https://doi.org/10.1016/S0140-7007(01)00074-3 -
Kang, Y. T., Akisawa, A. and Kashiwagi, T., 1999, Visualization and model development of Marangoni convection in
$NH_{3}-H_{2}O$ system, International Journal of Refrigeration, Vol. 22, pp. 640-649 https://doi.org/10.1016/S0140-7007(99)00019-5 - Koenig, M. S., Grossman, G. and Gommed, K., 2003, The role of surfactant adsorption rate in heat and mass transfer enhancement in absorption heat pumps, International Journal of Refrigeration, Vol. 26, pp. 129-139 https://doi.org/10.1016/S0140-7007(02)00012-9
- Glebov, D. and Setterwall, F., 2002, Experimental study of heat transfer additive influence on the absorption chiller performance, International Journal of Refrigeration, Vol. 25, pp. 538-545 https://doi.org/10.1016/S0140-7007(01)00042-1
- Choi, U. S., 1995, Enhancing thermal conductivity of fluids with nanoparticles, Development and Applications of Non-Newtonian flows edited by Siginer, D. A. and Wang, H. P., EFD- Vol. 231/ MD- Vol. 66, ASME New York, pp.474-480
- Eastman, J. A., Choi, S. U. S., Li, S., Yu, W. and Thomson, L. J., 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appled Physics Letters, Vol. 78, pp.718-720 https://doi.org/10.1063/1.1341218
- Keblinski, P., Phillpot, S. R., Choi, S. U. S. and Eastmasn, J. A., 2002, Mechanism of heat flow in suspensions of nano-sized particles (nanofluids), International Journal of Heat and Mass Transfer, Vol. 45, pp. 855-863 https://doi.org/10.1016/S0017-9310(01)00175-2
- Xuan, Y and Li, Q., 2000, Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow, Vol. 21, pp. 5864
- Li, Q. and Xuan, Y., 2002, Convective heat transfer and flow characteristics of Cuwater nanofluid, Science in China Series E; Technological Science, Vol. 45, pp. 408-416
- Xuan, Y. and Roetzel, W., 2000, Conceptions for heat transfer correlations of nanofluids, International Journal of Heat and Mass Transfer, Vol. 43, pp. 3701-3707 https://doi.org/10.1016/S0017-9310(99)00369-5
- Kim, L. H. and Jung, S. J., 1993, The effects of suspended particles on mass transfer in electrochemical system, Report of Korea Science and Engineering Foundation, KOSEF 911-1001-026-2