• Title/Summary/Keyword: brushless permanent magnet motor

Search Result 160, Processing Time 0.024 seconds

Design of a Hub BLDC Motor Driving Systems for the Patrol Vehicles (경계형 차량 구동용 허브 bldc 전동기 구동시스템 설계)

  • Park, Won-seok;Kunn, Young;Lee, Sang-hunn;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.612-615
    • /
    • 2013
  • Hub BLDC(Brushless Direct Current) motor, called wheel-in motor is a outer rotor type high efficient direct driving motor which have a multi-pole permanent magnet type rotor as a driving wheel. This study shows a hub BLDC motor speed controller design methode using PIC micro controller to drive 2 wheels or 3 wheels driving body having hub motor driving shaft. The motor driver unit consists of six discrete MOSFET switching devices and the gate driving module is directly designed for high economy.

  • PDF

A Study on starting Characteristics Improvement of Sensorless BLDC Motor (센서리스 구동 브러시리스 DC 모터의 기동 특성 개선에 관한 연구)

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.54-59
    • /
    • 2005
  • Brushless DC motor is a motor which is modified form DC brush motor and it does not have brushes. BLDCM is easy to centre, has wide speed range, high efficiency. However it needs speed sensor like encoder which increases the motor price and cause some faults in poor surroundings.. In this paper, for the sensorless control, the driving techniques for the initial stable start and the steady state are studied For the steady state the rotor position is determined using the measured back-EMF. To enhance the initial stating performance, the current signal from the free-wheeling diode is used. The results are conformed through the experiments.

Thermal Characteristics of 600 W Brushless DC Motor under Axial Loading Condition (회전축 부하를 고려한 BLDC 모터의 열적 특성에 관한 실험 및 수치 해석적 연구)

  • Kwon, Hwabhin;Lee, Won-Sik;Kim, Gyu-Tak;Park, Heesung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.999-1005
    • /
    • 2016
  • A brushless direct current (BLDC) motor electronically performs rectification without brushes. It therefore does not have the typical mechanical friction contacts between the brushes and commutators. The BLDC motor has the advantages of high speed, low noise, and electronic noise reduction in addition to high durability and reliability. Therefore, it is mainly used in electric vehicles and electric equipment. However, iron loss and copper loss due to long-term use induce temperature increases in the motor, which reduces its performance and life. The temperatures of the stator and permanent magnet are predicted to be $62.3^{\circ}C$ and $32.2^{\circ}C$, respectively. This study shows the enhanced temperature distribution in a 600 W BLDC motor using unsteady and three-dimensional (3D) numerical investigations validated with experimental data.

Performance Enhancement of Sensorless Drive for Brushless DC Motors using Digital Filter (디지틀 필터를 이용한 브러시리스 직류 전동기용 센서리스 드라이브의 성능 향상에 관한 연구)

  • Yeo, Hyeong-Gi;Kim, Tae-Hyeong;Park, Jeong-Bae;Lee, Gwang-Un;Yu, Ji-Yun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.63-68
    • /
    • 1999
  • This pper describes a digital sensorless drive of permanent magnet brushless DC motors. In order to detect in real time the rotor positions of which Emf becomes zero, terminal voltages are sampled during PWM duty cycle. This method generates detection error in indirect sensed position, which is the harmonic component of PWM frequency. In this paper, the drive adopted Butterworth low pass filter for rejection of the sensing error and for accurate estimation of commutation time. Analytical design process of the digital filter is proposed and the experimental results show that the performance of the proposed sensorless drive is superior to that of the sensorless drives without filterint.

  • PDF

Characteristic Analysis of Independent 6 phase BLDC Motor (독립 6상 BLDC 전동기의 특성해석에 관한 연구)

  • Jung, Sung-Young;Kong, Young-Kyong;Bin, Jae-Goo;Shin, Pan-Seok;Kim, Jang-Mok;Choi, Hong-Soo;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.939-945
    • /
    • 2009
  • This paper is described BLDC motor in the submarine propulsion system which is asked high power per unit area. This study analyzes the independent 6-phase BLDC motor a specific extended by existing the independent 3-phase BLDC motor and propose forward development direction. Independent 6-phase motor has a characteristics that phases of stator are independent electrically with each other and two's independence 3-phase BLDC motor are linked with each difference of 60 degree. Six-phase BLDC motor is simulated with Matlab-simulink, the simulation result has a high current and low torque pulsation than existent independence 3-phase BLDC motor.

Cogging Torque Analysis of BLDC Motor with the Axial Displacement of Rotor (축방향 변위를 가진 BLDC 전동개의 코깅토크 해석에 관한 연구)

  • Kim, Young-Kyoun;Lee, Jeong-Jong;Nam, Hyuk;Hong, Jung-Pyo;Jin, Young-Woo;Hur, Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.368-372
    • /
    • 2003
  • This paper deals with the cogging torque analysis of a BLDC Motor, which has the axial displacement of its rotor. In order to improve the torque performance of the BLDC motor, Brushless motor is commonly designed to minimize its cogging torque. Therefore, a skewed model is used to reduce the cogging torque. However, even though the rotor or stator is skewed, the cogging torque could be increased by the axial displacement of the rotor, which occurs when the BLDC Motor is manufactured. Therefore, this paper investigates the effect of the axial displacement of the rotor on the cogging torque. In order to investigate the effect, an analysis method, which is 3D-EMCN in combination with 2D-FEM, is proposed to analyze the cogging torque of the BLDC motor with the axial displacement of its rotor, and the result of the analysis is verified by comparison with the experimental result.

Characteristic Analysis of Inverter for Multi-phase BLDC motor (다상 BLDC 전동기 인버터 특성 해석)

  • Oh, Jin-Seok;Yoo, Heui-Han;Kim, Jang-Mok;Jo, Kwan-Jun;Kwak, Jun-Ho;Oh, Hyung-Shic
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.983-989
    • /
    • 2007
  • This paper decribes multi-phase BLDC motor with a minimum torque pulsation among BLDC motor used for electric propulsion system. Multi-phase BLDC motor has characteristic that phase of stator has more than 3-phase. This paper is modeling two type of BLDC motor, one has 3-phase and the other has 7-phase, and it shows simulation of them comparing its characteristics. As a result of simulation, the 7-phase BLDC motor shows better performance in terms of torque pulsation. It is also found that the torque pulsation is reduced further by increasing the number of phase.

A Driving Torque Prediction of Brushless DC Motor by Using the Measured Current Data (전류측정 데이터를 이용한 브러쉬 없는 직류전동기의 구동토크 예측)

  • 변영철;전혁수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.242-250
    • /
    • 1999
  • This paper presents an estimation scheme of the external torque applied on the motor by using measured motor input current when the IPM(Interior Permanent Magnet) rotor type BLDC motor operates with constant speed. In general, the BLDC motor is controlled by vector control method. If it could be operated at over critical speed, the control scheme must be modified to flux-weakening control method. The external torque applied on the motor using flux-weakening control method could not be calculated by conventional torque equation because the demagnetizing current Id exists in the motor input current. In this paper, the commonly used flux-weakening control method is studied and the modified torque estimation scheme is suggested. The estimation scheme has been verified by the simulations and experimental results.

  • PDF

Electrical Characteristics and Electromagnetic Excitation Force Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전기적 특성 및 전자기적 가진원 분석)

  • Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet(PM) motor according to the driving method that is Brushless DC(BLDC) drive and Brushless AC(BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis(FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

Characteristics Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전자기적 특성 및 진동 소음 비교)

  • Hong, Jung-Pyo;Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Jang, Woo-Kyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.522-527
    • /
    • 2012
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet (PM) motor according to the driving method that is Brushless DC (BLDC) drive and Brushless AC (BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis (FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

  • PDF