• Title/Summary/Keyword: brushless

Search Result 766, Processing Time 0.03 seconds

A Study on an Implementation of Control Panel of Sun Trackers and Monitoring System for Photovoltaic Generation Plants (태양광발전의 태양추적기제어반 및 모니터링시스템 구현에 관한 연구)

  • Lho, Tae-Jung;Park, Min-Yong;Lee, Seung-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3161-3167
    • /
    • 2010
  • Hall sensors of BLDC(brushless DC) motor are used to detect a position information for a control mechanism, which implements an algorithm for velocity and position control. Actual azimuth and altitude were measured to evaluate a control precision. The measurement revealed comparatively good accuracy that the measured values were $2.02^{\circ}$ and $1.01^{\circ}$ respectively, and the maximum error falls within $1.86^{\circ}$. The developed monitoring system of photovoltaic generation plants is a LCU(Local Control Unit) based on an integrated monitoring system which supports 1:N method for multiple simultaneous connections, remote control and real-time system state monitoring.

Fault Detection of BLDC Motor Drive Based on Operating Characteristic (BLDC 전동기 운전 특성을 이용한 고장 검출 기법 구현)

  • Lee, Jung-Dae;Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.88-95
    • /
    • 2008
  • This paper proposes a fast fault detection algorithm under open-circuit fault of a switch for a brushless DC(BLDC) motor drive system. This proposed method is configured without the additional devices for fault detection and identification. The fault detection and identification are achieved by a simple algorithm using the operating characteristic of the BLDC motor. After the fault identification, the drive system is reconfigured for continuous operation. This system is reconfigured by four-switch topology connecting a faulty leg to the middle point of DC-link bidirectional switches. This proposed method can also be embedded into existing BLDC motor drive systems as a subroutine without excessive computational effort. The feasibility of a the proposed fault detection algorithm is validated in simulation and experiment.

BLDC Motor Control Unit for Automation of X ray Equipment (X선 기기의 자동화를 위한 BLDC 모터 제어 장치)

  • Kim, Tae-Gon;Kim, Young-Pyo;Cheon, Min-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.833-838
    • /
    • 2011
  • X-ray device used in the diagnosis has made possible to have more effective and accurate diagnosis, powered by the development of various devices. Based on this, X-ray device has become the most basic and essential diagnostic equipment in clinical medicine. At present, in the image acquisition field using X-ray, the use of Digital radiography which is useful in the acquisition time reduction and transfer of images and is possible to have the dose reduction has expanded. With the structure using one detector, this DR device has disadvantages in that it needs structural changes unlike existing X-ray and the detector should be moved to the desired position depending on the shooting location. Therefore, in this study, using BLDC(Brushless direct current) motor and PID(Proportional integral differential) control method, the automatic control system of 3-axis which is upward and downward, left and right and rotation of detector where having the most movement in DR was designed and produced and its performance was evaluated.

Sensorless Detection of Position and Speed in Brushless DC Motors using the Derivative of Terminal Phase Voltages Technique with a Simple and Versatile Motor Driver Implementation

  • Carlos Gamazo Real, Jose;Jaime Gomez, Gil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1540-1551
    • /
    • 2015
  • The detection of position and speed in BLDC motors without using position sensors has meant many efforts for the last decades. The aim of this paper is to develop a sensorless technique for detecting the position and speed of BLDC motors, and to overcome the drawbacks of position sensor-based methods by improving the performance of traditional approaches oriented to motor phase voltage sensing. The position and speed information is obtained by computing the derivative of the terminal phase voltages regarding to a virtual neutral point. For starting-up the motor and implementing the algorithms of the detection technique, a FPGA board with a real-time processor is used. Also, a versatile hardware has been developed for driving BLDC motors through pulse width modulation (PWM) signals. Delta and wye winding motors have been considered for evaluating the performance of the designed hardware and software, and tests with and without load are performed. Experimental results for validating the detection technique were attained in the range 5-1500 rpm and 5-150 rpm under no-load and full-load conditions, respectively. Specifically, speed and position square errors lower than 3 rpm and between 10º-30º were obtained without load. In addition, the speed and position errors after full-load tests were around 1 rpm and between 10º-15º, respectively. These results provide the evidence that the developed technique allows to detect the position and speed of BLDC motors with low accuracy errors at starting-up and over a wide speed range, and reduce the influence of noise in position sensing, which suggest that it can be satisfactorily used as a reliable alternative to position sensors in precision applications.

Fluid Dynamic Bearing Spindle Motors for DLP (DLP용 유체동압베어링 스핀들모터)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 슬롯리스 PM BLDC 전동기의 속도제어)

  • Yoon Y. H.;Kim Y. C.;Lee S. S.;Won C. Y.;Choe Y. Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.536-543
    • /
    • 2004
  • Slotless Permanent Magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and power density has been more widely used In Industrial and factory machine. Generally, PM BLDC meter is necessary that the three Hall-lCs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in PM BLDC Motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if it used only one Hall-IC, we can estimate information of the others phase in sequence through a rotor This paper identified the characteristics and performance by using one Hall-IC with the 3-phase, 2-pole, 6-slot PM BLDC motor.

A Study on Rotor Position Detection and Securing Initial Position for Switched Reluctance Motor (SRM) (스위치드 릴럭턴스 전동기 (SRM) 회전자 위치 검출 및 초기 위치확보 연구)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.141-146
    • /
    • 2020
  • In brushless DC motors (BLDC), the on/off angle of the switch is determined by the optimal alignment of the stator and rotor, while switched reluctance motors (SRM) are complex parameters with many on/off angles of the switch. It appears as a function and therefore the switching angle is variable for optimal operation. Therefore, in order to operate the switched reluctance motor (SRM) optimally, the rotor position can be detected using a high resolution position sensor and a complicated additional circuit. In this paper, rotor position detection and related position detection circuits are applied and detected by using various sensors such as encoder, hall sensor and opto interrupter among several methods to drive switched reluctance motor (SRM). Also a study on securing the initial position of the rotor was conducted.

A Study on Optimal Design of 100 V Class Super-junction Trench MOSFET (비균일 100V 급 초접합 트랜치 MOSFET 최적화 설계 연구)

  • Lho, Young Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.109-114
    • /
    • 2013
  • Power MOSFET (metal-oxide semiconductor field-effect transistor) are widely used in power electronics applications, such as BLDC (Brushless Direct Current) motor and power module, etc. For the conventional power MOSFET device structure, there exists a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a non-uniform super-junction (SJ) trench MOSFET (TMOSFET) structure for an optimal design is proposed in this paper. It is required that the specific on-resistance of non-uniform SJ TMOSFET is less than that of uniform SJ TMOSFET under the same breakdown voltage. The idea with a linearly graded doping profile is proposed to achieve a much better electric field distribution in the drift region. The structure modelling of a unit cell, the characteristic analyses for doping density, and potential distribution are simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the non-uniform SJ TMOSFET shows the better performance than the uniform SJ TMOSFET in the specific on-resistance at the class of 100V.

Plug-in BLDC Control System using DC-link Communication (DC 전력선 통신을 이용한 Plug-in형 BLDC 구동 시스템)

  • Tao, Yu;Song, Sung-Geun;Lee, Min-Jung;Kim, Kwang-Heon;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.105-111
    • /
    • 2009
  • The powers used in the motor drive system are mostly DC sources like batteries. Even AC powers in some systems are generated from DC sources by the inverter. It is can be forecasted that the DC-link communications will be widely used in various industrial fields. In this paper a novel BLDC motor drive system using DC-link communications is proposed. The characteristic of this system Is that the communication only needs 2 DC lines. There are not additional lines to translate the reference signals. And the reliability o3 the system is ensured especially under some terrible circumstances. The number of lines can be minimized when the DC-link communication method is applied in the multi motor control system and the slip ring design also can be simplified when this method is applied in rotation machines. The proposed motor system is clarified by the PSIM and MATLAB simulations and tested through the hardware prototype.

Fault Detection and Isolation for the Inverter of BLDC Motor Drive using EKF (EKF를 이용한 BLDC 모터 구동기 인버터의 고장 검출 및 분리)

  • Kim, SunKi;Seong, SangMan;Kang, Kiho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.706-712
    • /
    • 2014
  • The inverters used to drive Brushless DC motors (BLDC) include switching devices such as FETs and the faults in FETs cause severe performance degradation in systems where a BLDC acts as actuator. This paper presents a fault detection and isolation method for the FETs of an inverter for BLDC motor control systems, which is based on the EKF (Extended Kalman filter). Firstly, an equivalent circuit model for a BLDC motor plus its inverter system was derived. Secondly, a state-space equation was established, where the on-resistance of the FETs is expressed as a state variable and the EKF equation estimates the on-resistance. If the estimated resistance differs greatly from the known value, it can be asserted that there is a fault on that FET. Thirdly, the local convergence of the established EKF was proved. Finally, through the experiments, the performance of the proposed method was verified. The results show that the on-resistance is estimated close to the value specified in the FET data sheet in normal operation, whereas the estimated resistance is a much larger value than the normal one in case an FET fault occurs. Therefore, it is confirmed that the proposed fault detection and isolation method works appropriately in real systems.