• Title/Summary/Keyword: brushless

Search Result 766, Processing Time 0.026 seconds

Sensorless Staring Method of Brushless DC Motor (소형 BLDC MOTOR의 SENSORLESS 기동방법에 관한 연구)

  • Noh, Seung-Mo;Park, Seung-Kyu;Yoon, Tae-Sung;Ahn, Ho-Kyun;Seo, Jung-Rang
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1813-1814
    • /
    • 2006
  • BLDC 전동기는 AC서보 일종으로 스위칭 소자를 이용한 인버터 회로를 통해 정류하므로 정류 시 회전자의 위치 정보를 회전자에 홀 센서나 레졸버와 같은 위치 센서를 부착하여 위치 정보를 얻는다. 위치 센서는 전동기 가격 및 크기를 증가시키고 구조를 복잡하게 만들기에 위치 검출 센서 없이 구동하는 센서리스 구동 방법이 최근 많이 연구되고 있다. 센서리스 구동 방법에 가장 많이 쓰는 방법이 역기전력을 이용하는 것이다. 역기전력을 이용하는 경우 전동기가 고속으로 회전 시 비교적 잘 적용되지만 정지 상태에 있거나 저속에서 운전 시, 역기전력이 충분히 크지 않을 경우 적용이 어려운 단점이 있다. 본 논문에서는 BLDC 전동기의 3상 중 2상의 단자전압을 이용하여 센서리스 구동 방법을 제안한다. 정지 상태에서의 회전자 위치 파악은 DC링크 단에 전류 센서를 사용하여 초기 위치를 파악하고 한상의 단자전압을 검출하여 각 상의 여자 시점을 결정하여 초기 구동함으로써 기존의 다른 센서리스 회로의 간략화와 효율적이고 구현이 간단하며 무엇보다 가격전인 측면에서 여타의 방법에 비해 유리하다.

  • PDF

Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by Numerical Method (수치해석에 의한 고속팬용 밀폐구조형 BLDC모터의 열신뢰성 분석)

  • Moon, Sun-Ae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.130-138
    • /
    • 2010
  • The thermal reliability of the closed-type BLDC motor for the high speed axial fans is analyzed by a numerical method in this paper. Since the module and the motor part are combined in a closed case, the heat generated from a rotor in the motor and the electronic components in the PCB module can not be effectively removed to the outside. Therefore the module will easily fail by high temperature. The accelerated-life testing was accomplished to formulate the life equation and numerical method is used to predict the inside temperature of the PCB module, which is one of the life equation parameter according to the environment. When the environment temperature of BLDC motor is 21, 35 and 50 $^{\circ}C$, the temperature in the PCB space is predicted as 73.4, 87.5 and 102.4 $^{\circ}C$. Then the life time with the temperature are calculated as 2,239, 863 and 328 hours.

A Performance of Single Phase Switched Reluctance Motor having both Radial and Axial air gap

  • 임준영;정윤철;권경안
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.184-188
    • /
    • 1999
  • Switched Reluctance Motor has doubly salient poles in stator and rotor, windings are wound in just stator and no magnet or windings on the rotor. This configuration is robust mechanically and thermally. The inverter of SRM is more robust than that of induction or brushless DC(BLDC) motor, but still its drive is comparatively expensive for home appliance. To drive the conventional three or four-phase SRM, 6 to 8 power switches are required when asymmetric bridge inverter is employed. Generally, more than 50% of the cost for the SRM drive is allocated to power devices and gate drives. This paper proposed single phase SRM that have both radial and axial air gaps. The stator and rotor were stacked with two types of stampings that have different diameters. This configuration is very effective to increase align inductance(Lmax). The high value of Lmax increases the motor efficiency and power density. The proposed single phase SRM(Claw SRM) can be driven by only two power switches. To show the validity of the proposed idea, the analysis using finite element method(FEM) and experimental works are carried out. The proposed SPSRM can be driven with high efficiency and can be made compactly and inexpensively because of high value of align inductance and less number of switches. For the comparison, we used same stator for three-phase and single phase, and slightly different stator and rotor for proposed single phase SRM(Claw SRM)

  • PDF

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

Speed Control of High Speed Miniature BLDCM Based on Software PLL (소프트웨어 PLL 기반 소형 고속 BLDCM의 속도 제어)

  • Lee, Bong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • This paper presents a PLL(Phase Lock Loop) approach for effective speed and torque control of high speed miniature BLDCM(Brushless DC Motor) using hall sensor. The proposed speed control method based on PLL uses only a phase shift between reference pulse signal according to speed reference and actual pulse signal from hall sensor. It doesn't use any speed calculation, and calculates a direct current reference from phase shift. The current reference is changed to reduce the phase shift between reference and actual pulse. So the actual speed can keep the reference speed. The proposed control scheme is very simple but effective speed control is possible. In order to obtain a smooth torque production, the reference current is changed using acceleration and deceleration slope. The proposed control scheme is verified by experimental results of the 50W, 40,000[rpm] high speed miniature BLDCM.

Development of the Control System for the Motor-Driven Electromechanical Total Artificial Hearta

  • Kim, Hee-Chan;Lee, Sang-Hun;Kim, Jong-Won-;Kim, Jin-Tae-;Min, Byoung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.858-863
    • /
    • 1988
  • A micro-processor based control system for a brushless DC motor used in the motor-driven electromechanical total artificial heart was developed. Functionally, the control system is composed of two parts. The first part is the velocity and position controller to assure that the motor follows a predetermined optimal velocity profile with minimal energy consumption, and to guarantee the full stroke length. This part also utilize the passive adaptive control method to be robust against the load disturbance, system parameter variation, and uncertainty which is the environment of artificial heart system. The pump output control is the second part, and this part provides the required responses of the artificial heart to the time-varying physiologic demands. The basic requirements of these responses are preload sensitivity, afterload insensitivity, and the balanced ventricular outputs. The performance and reliability of this control system was evaluated through a series of mock circulation tests and animal implantation, and the results are very encouraging.

  • PDF

The Modified Two-axis Vector Controller of Linear Induction Motor to Apply to the Non-contact Stage with Large Workspace (대면적 비접촉 스테이지에 구동기 적용을 위한 선형유도기의 변형된 2축 벡터 제어기)

  • Jung, Kwang-Suk;Lee, Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • To effectively cope with a complexity of kinematic metrology due to workspace enlargement of the planar stage, the linear induction motor is suggested as its new driving source. Especially, the linear induction motor under uniform plate type of secondary doesn't inherently have a periodical force ripple which is generally shown in the brushless DC motor. But, it presents a poor transient characteristic at zero or low speed zone owing to time delay of flux settling, resulting in slow response. To improve the servo property of linear induction motor and apply successfully it to the precision stage, this paper discusses a modified vector control methodology. The controller has a novel input form, fixed d-axis current, q-axis current and forward-fed DC current, to control thrust force and normal force of the linear induction motor independently. Influence of the newly introduced input and the feasibility of controller are validated experimentally.

Equivalent Dynamic Modeling of Coil Bundle for Prediction of Dynamic Properties of Stator in Small Motors (소형 전동기의 고정자 동특성 예측을 위한 코일 다발의 등가 동적 모형화)

  • 은희광;고홍석;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.540-545
    • /
    • 2001
  • In case of small motors, coil bundle occupies a large portion of stator in view of mass and volume as well as dynamics. It is observed through modal test on the stator of an IPM BLDC (interior permanent magnet brushless direct current) motor that coil bundle wound on the stator core causes the first and second natural frequencies to decrease by about 20-30% compared with those of bare stator. Especially the third natural frequency is newly observed below 3 KHz, which is not observed on the bare stator. It is found that at the third mode the end-coil and the core vibrate out of phase in radial direction. In this paper, the stator is dynamically modeled in terms of the core and the coil bundle consisting of the end-coil and the slot coil based on the above observations for the prediction of dynamic properties. The core can easily be modeled using finite element method with its actual material properties and geometric shape. The concept of equivalent bending stiffness is used for modeling of the end-coil so that predictions may match with the measured natural frequencies for the end-coil cut out of the stator. Although the same concept can be applied to the slot coil, separation of the slot coil from the stator is impractical. Therefore, equivalent bending stiffness of the slot coil is determined through iterative comparisons with the measurements of natural frequencies of the stator with the slot coil in it.

  • PDF

A Study on the Start-up Control for HDD Spindle Motors (HDD 스핀들 모터의 초기 구동 제어에 관한 연구)

  • Jeong, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.869-873
    • /
    • 2008
  • Optimization method for the open loop commutation time intervals in HDD spindle start-up control is presented in this paper. A hard disk drive(HDD) uses a sensorless brushless DC motor(BLDC) for the platter rotation. Because there is no direct sensor for the rotor position, open loop commutations after sensing the rotor position at a standstill using inductive sensing method are performed to speed up the rotor up to a certain speed where the zero crossings of the back electromotive force(EMF) are measurable. Therefore successful open loop commutations are necessary for the stable start-up control of the spindle motors. Random neighborhood search(RNS) algorithm is introduced as a optimization technic in this paper. Rotor speed and its standard deviation are used as a cost function and commutation intervals obtained from the spindle motion equation are used as initial parameter values for the RNS. With the help of the proposed method optimized open loop commutation time intervals for the very low start-up current are acquired and tested. The experimental results shows that the proposed method can decrease the start-up failure rate of a HDD spindle motor.

  • PDF

Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings (원추형 자기 베어링 지지 무마찰 구동장치의 위치제어)

  • Jeong, Ho-Seop;Lee, Chong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF