• Title/Summary/Keyword: brown-rot

Search Result 255, Processing Time 0.031 seconds

Distribution and Preservative Effectiveness of Resin Element in Pine Wood Impregnated with Monoethylene Glycol Resin Solution (Monoethylene Glycol계(系) 수지액(收支液)을 주입(注入)한 소나무재(材)에 있어서 수지성분(樹脂成分)의 분포(分布)와 방부효과(防腐效果))

  • Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.77-82
    • /
    • 1995
  • With the aim to utilize pine wood(Pinus densiflora Sieb. et Zucc.) as an interior building materials, such as flooring material, monoethylene glycol(MEG) resin solution was impregnated into greenwood. Specimens of three different qualities, that is, normal wood, resinous wood and compression wood, were prepared. Distribution of resin element(phosphorus) in MEG resin solution-impregnated woods and preservative effectiveness against brown rot fungi(Tyromyces palustris and Serpula lacrymans) of these woods were investigated. The results were as follows: 1. The concentration of phosphorus into cell walls of resinous wood and compression wood was lower compared to that of normal wood. This shows that the quality of wood has an influence on the penetration of MEG resin solution into the wood. It was shown from a leaching test that MEG resin could be leached out easily from the cell walls. 2. The resinous wood and compression wood, even without MEG resin solution impregnation had high decay resistance. For normal wood, significant improvement of preservative effectiveness was observed after impregnation of MEG resin solution. It was shown that MEG resin was leached out from the woods after leaching test, resulting in the reduction of preservative effectiveness. From this result, suitability of MEG resin solution-impregnated woods as an interior materials was recognized.

  • PDF

Flower Rot of Cotton Rose (Hibiscus mutabilis) Caused by Choanephora cucurbitarum (Choanephora cucurbitarum 에 의한 부용 꽃썩음병)

  • 권진혁;박창석
    • Research in Plant Disease
    • /
    • v.8 no.1
    • /
    • pp.55-58
    • /
    • 2002
  • In July 2001, rotting and shivering flowers of cotton rose (Hibiscus mutabitis) were fecund in the flower beds along the roadsides in Jinju area. The disease first started as water-soaking, dark-green lesions on the petals, and then whole flower was rotted rapidly, Whitish mycelia and monosporous sporangiophore with monosporous sporangiola were formed abundantly on the lesions. Colony appeared as white to pale yellowish brown mycelia on potato dextrose agar medium (PDA). Monosporous sporangiophore was long slender and branched at the apex, each branch bearing a head of sporangiospores. Sporangium was subglobose in shape and was 42.6-114.2$\mu$m in size. Monosporous sporangiola were elliptic, fusiform or ovoid, and brown in color and 12.3~21.6 $\times$8.3~11.6$\mu$m Um in size. Sporangiospores were elliptic, fusiform or ovoid in shape, dark brown or brown in color and 16.3~23.8$\times$8.2~13.6$\mu$m in size, and they had three or more appendages at bipolar end. Zygospores were mostly globose, dark black colored and sized was 46.2-78.4$\mu$min diameter, The fungus grew on PDA between at 15 to 4$0^{\circ}C$, and the optimum temperature was 3$0^{\circ}C$. This is the first report on the flower rot of cotton rose caused by C. cucurbitarum in Korea.

Occurrence of Colletotrichum Stem Rot Caused by Glomerella cingulata on Graft-Cactus in Korea

  • Kim, Young-Ho;Jun, Ok-Kyoung;Sung, Mi-Joo;Shin, Jun-Sung;Kim, Jung-Ho;Jeong, Myoung-Il
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.242-245
    • /
    • 2000
  • In 1999 and 2000, a rot of graft-cacti including Hylocereus trigonus (three-angled cactus), Gymnocalycium mihanovichii, and Chamaecereus silvestrii occurred in several greenhouses in major cactus-growing areas of Korea. Typical symptoms included a moist, light brown rot or a watery rot of the stems. A Colletotrichum sp. was isolated from the lesions. The fungus formed dark gray, dense or floccose colonies on potato dextrose agar, frequently forming many light pink acervuli often surrounded with setae. The hyaline, cylindrical conidia were one-celled with round ends. Appressoria were mostly semicircular or clavate. Thin-walled asci contained eight, one-celled, hyaline ascospores (biseriate in ascus). Ascopspores were strainht or curved, ellipsoidal or subcylindrical. Based on these characteristics, the fungus was identified as Glomerlla cingulata (anamorph : C. gloeosporioides). Wound inoculation of basal stems of the cactus by the mycelial plugs or conidia produced symptoms identical to those described above. Various cactus species were compared in susceptibility using stem disc inoculation. Cereus tetragonus, Eriocereus jusbertii, Myrtillocactus geomentrizans, and three-angled cacti from Mexico and Taiwan were susceptible, but C. peruvianus (Peruvian apple cactus) and Harrisia tortuosa not. This is the first report of G. cingulata causing stem rot of graft-cactus in Korea.

  • PDF

Stem Rot of Obedient plant (Physostegia virginiana) Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 꽃범의꼬리 흰비단병 발생)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.221-223
    • /
    • 2003
  • In May 2002, a destructive stem rot of Obedient plant (Physostegia virginiana) occurred sporadically in an exhibition farm of Hamyang-gun, Gyeongsangnam-do Agricultural Research and Extension Services, Korea. The typical symptoms of the disease were stem rot, crown rot, wilt or blight. Upper parts of the infected stems were mostly blighted. White mycelial mats were spread over lesions and the sclerotia were formed on the stems near soil line. The sclerotia was globoid or irregular in shape, 1${\sim}$3 mm in size, and brown in color. The optimum temperature for fungal growth was about $30^{\circ}C$. The typical clamp connections were observed in the hyphae of the fungus grown on PDA, and hyphal diameter was 3.6${\sim}$9.4 ${\mu}m$. On the basis of mycological characteristics and test of pathogenecity to host plants, the fungus was identified as Sclerotium rolfsii. This is the first report on the stem rot of Physostegia virginiana caused by Sclerotium rolfsii in Korea.

Stem Rot of Eggplant (Solanum melongena) Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 가지 흰비단병)

  • Kwon, Jin-Hyeuk;Shin, Shun-Shan;Park, Chang-Seuk
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.117-119
    • /
    • 2003
  • A stem rot of eggplant (Solanum melongena) was found in experimental field of Gyeongsangnam-do Agricultural Research and Extension Services, Korea. The typical symptoms of the disease were stem rot, crown rot, wilt or blight. Upper parts of the infected stems were mostly blighted and white turf of fungal mycelium mats was spread over lesions. Sclerotia were farmed on the stems near soil line. The sclerotia of the fungus eadily were produced in artificial media such as PDA at $30^{\circ}C$. The sclerotia were globoid, $1.0{\sim}3.4mm$ in diameter and brown in color. The optimum temperature for growth of the fungus was about $30^{\circ}C$. The typical clamp connections were found in the hypha formed on PDA, and was $3.8{\sim}10.6{\mu}m$ in size. On the basis of mycological characteristics and pathogenecity test, the fungus was identified as Sclerotium rolfsii. This is the first report of stem rot of eggplant caused by Sclerotium rolfsii in Korea.

Stem Rot of Pansy (Viola tricolor) Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 팬지 흰비단병)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.9 no.1
    • /
    • pp.25-27
    • /
    • 2003
  • In 2002, a stem rot disease was found on Pansy (Viola tricolor) in several road-side flower beds in Jinju City, Gyeongnam province, Korea. The typical symptoms of the disease were stem rot, crown rot, wilt or blight. Upper parts of the infected stems were mostly blighted. White mycelial mats were spread over lesions and the sclerotia were farmed on the stems near soil line. The sclerotia was globoid or irregular in shape, 1.3~4.2 mm in size, and brown in color, The optimum temperature for fungal growth was about 3$0^{\circ}C$. The typical clamp connections were found in the hyphae of the fungus grown on PDA, and hyphal diameter was 3.9~10.4 ${\mu}{\textrm}{m}$. On the basis of mycological characteristics and pathogenecity test on host plants, the fungus was identified as Sclerotium rolfsii. This is the first report on the stem rot of Viola tricolor caused by Sclerotium rolfsii in Korea.

First Report of Pectobacterium brasiliense Causing Soft Rot on Graft Cactus in Korea

  • Park, Kyoung-Taek;Hong, Soo-Min;Back, Chang-Gi;Kim, San Yeong;Lee, Seung-Yeol;Kang, In-Kyu;Ten, Leonid N.;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • The graft cactus (Gymnocalycium mihanovichii) continues to be exported to more than 20 countries worldwide. In April 2021, typical bacterial symptoms of soft rot were observed in the graft cactus (cv. Yeonbit) in Goyang, Gyeonggi-do, Korea, resulting in economic losses in cactus production. The stems turned dark brown and the flowers were covered with black rot. The bacterial strain designated as KNUB-01-21 was isolated from infected stems and flowers. The results of the morphological and biochemical tests of the isolate were similar to those of Pectobacterium brasiliense. For molecular analysis, the 16S rRNA region and three housekeeping genes (dnaX, leuS, and recA) of the strain KNUB-01-21 were amplified. Based on the results of the molecular analysis and morphological and biochemical tests, KNUB-01-21 was identified as P. brasiliense. The pathogenicity of KNUB-01-21 on graft cactus was confirmed by an inoculation test. Artificial inoculation using P. brasiliense KNUB-01-21 produced soft rot symptoms on the grafted cactus, and the same bacterium was re-isolated and re-identified. This is the first report of P. brasiliense causing soft rot in graft cactus in Korea.

Decay Resistance and Anti-mold Efficacy of Wood Treated with Fire Retardants (난연처리 목재의 방미 및 방부성능)

  • Son, Dong Won;Kang, Mee Ran;Lee, Dong-Heub;Park, Sang-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.559-565
    • /
    • 2013
  • This study evaluated the ability of white and brown rot fungi to decompose fire retardant-treated wood by measuring mass loss. Anti efficacy of FRT against sapstain and mold fungi was evaluated. Wood was treated with liquid sodium silicate and boric acid, ammonium borate, di-ammonium phosphate. Retardant treated wood was then subjected to fungal decay resistance tests performed according to KS standard method using a brown-rot fungus, Fomitopsis palustris and white rot fungus Trametes versicolor. Aspergillus niger, Penicillium funiculosum, Rhizopus nigricans, Aureobasidium pullulans, Tricoderma virede fungi were used anti-sapstain and mold test. Boron and phosphorus chemicals used in this study increased the resistance of fire retardant treated wood against both fungal attack. Anti mold and sapstain efficacy of the fire retardant treated wood was excellent but there were difference depend on mold. After the liquid sodium silicate treatment, the second chemical treatment process could lead chemical fixation into wood, which effects decay resistance.

First Report of Fruit Rot Caused by Fusarium decemcellulare in Apples in Korea

  • Lee, Seung-Yeol;Park, Su-Jin;Lee, Jae-Jin;Back, Chang-Gi;Ten, Leonid N.;Kang, In-Kyu;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.45 no.1
    • /
    • pp.54-62
    • /
    • 2017
  • In 2014, abnormal brown spots were observed on Hongro apples in fields in Gyeongsangbuk-do Province and during low-temperature storage. The spots were round, blight brown, and different from the symptoms of previously reported apple diseases. A fungal pathogen was isolated and cultured on potato dextrose agar, and it was morphologically similar to Fusarium decemcellulare. A pathogenicity test showed the same brown spots on both wounded and unwounded Hongro and Fuji apple cultivars. RPB1 and RPB2 sequences of F. decemcellulare KNU-GC01 matched with those of F. decemcellulare NRRL 13412 (98.3% and 97.6% similarities, respectively); both strains clustered together in the phylogenetic tree, indicating their close relationship at the species level. Therefore, F. decemcellulare is a newly reported pathogen that causes brown spots on apples in Korea.

Effects of Substrate EC and Water Content on the Incidence of Brown Fruit Stem and Blossom End Rot in Glasshouse Sweet Pepper (배지내 EC와 함수율이 착색단고추의 과병무름증과 배꼽썩음과 발생에 미치는 영향)

  • Yu Geun;Choi Dong-Geun;Bae Jong-Hyang;Guak Sung-Hee
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • The objective of this study was to determine the effects of substrate water content and electrical conductivity (EC) on the incidence of brown fruit stem and blossom end rot in glasshouse sweet pepper (Capsicum annuum cv. Special). Three levels of water content and EC had been treated since the first fruit reached 3cm in diameter: that is, 49 (low), 65 (medium), and 86% (high) for water content, and 2.4 (low), 4.2 (medium) and $6.3dS{\cdot}m^{-1}$(high) for EC. Shoot growth was reduced with decreasing water content, and it was lower in both high and low EC treatments than medium EC treatment. Fruit weight at harvest was greater in both medium and hish water content treatments than low water content treatment (158g vs 146g). High EC reduced fruit weight compared to or low EC treatments. The incidence of brown fruit stem increased with increasing water content and with decreasing EC. The highest incidence was shown in the high water content/low EC treatment (38%), which was considerably higher than 2.4% of the low water content/high EC treatment. Blossom end rot occurred in general in the low water content and/or high EC conditions. These results indicated that substrate water content and EC should be controlled differently according to the growth stage, to reduce the incidence of blossom end rot and brown fruit stem in glasshouse sweet pepper. First, to reduce blossom end rot incidence, water content should be maintained high (86%) and EC low ($2.4dS{\cdot}m^{-1}$) until Sweets after fruit set. Secondly, to reduce brown fruit stem incidence, water content should be maintained low (49%) and EC high ($6.3dS{\cdot}m^{-1}$), especially after completion of fruit growth.