• Title/Summary/Keyword: brown adipose tissue

Search Result 77, Processing Time 0.027 seconds

Proteomics studies of brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning (Proteomics 분석기반 갈색지방 활성화 및 백색지방의 갈색지방화(browning)조절 연구)

  • Bae, Kwang-Hee;Kim, Won-Kon
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • Obesity is a worldwide problem that is associated with metabolic disorders. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue. Adipose tissue is a major metabolic organ, and it has been classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and gene expression patterns. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides. On the other hand, BAT specializes in dissipating energy as heat through uncoupling protein-1 (UCP-1)-mediated non-shivering thermogenesis. Novel type of brown-like adipocyte within WAT called beige/brite cells was recently discovered, and this transdifferentiation process is referred to as the "browning" or "britening" of WAT. Recently, Brown fat and/or browning of WAT have been highlights as a new therapeutic target for treatment of obesity and its related metabolic disorders. Here, we describe recent advances in the study of BAT and browning of WAT, focusing on proteomic approaches.

Expression of Steroidogenesis-related Genes in Rat Adipose Tissues

  • Byeon, Hye Rim;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2016
  • Adipose tissue is one of the major endocrine gland. More recently, local production of steroids in adipocytes differentiated from mouse 3T3-L1 cell-line was reported. We hypothesized that rat adipocytes have steroidogenic machinery and the expression patterns of the components might be differentially regulated, depending on the distribution and sex. To verify this hypothesis, we collected the adipose tissues depot-and sex-specifically at postnatal day (PND) 30, and performed quantitative RT-PCRs. In overall aspects, the abundances of the transcripts were lower in the brown adipose of both sexes. $3{\beta}-HSD$ transcript levels in female abdominal and reproductive adipose, CYP17 transcript levels in female reproductive adipose, $17{\beta}-HSD$ transcript levels in female abdominal and reproductive adipose, and CYP19 transcript levels in female abdominal adipose were significantly lower than those of male counterparts. Similar to steroidogenic factors, the abundance of the $ER-{\alpha}$ transcripts were generally lower in the brown adipose of both sexes. $ER-{\beta}$ transcripts were more abundant in male white adipose depots than their female counterparts. The levels of LHR transcripts in female reproductive adipose were significantly higher than those of male counterpart. In conclusion, our study demonstrated that the expressions of steroidogenesis-related genes were depot- and sex-specifically occurred in the immature male and female rat adipose tissues. Our study suggested that the adipose tissues are not only targets but de novo synthesizing sites of sex steroid(s), though the synthesizing activities could be much less than in gonads. Further researches in this field will be helpful for understanding the adipose physiology and for medical application such as sex-specific steroid supplement therapies for older populations.

The Effect of Ecklonia Cava on Expressing of Blood Lipids and UCP-1 of Brown Adipose Tissue(BAT) in Zucker Rats (감태(甘苔)가 비만 쥐의 혈중지질과 갈색 지방조직의 UCP-1 발현에 미치는 영향)

  • Kim, Hyun-Woo;Kim, Ho-Jun;Park, Young-Hoi;Keum, Dong-Ho;Lee, Myeong-Jong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.63-72
    • /
    • 2008
  • Objectives : This study was designed to examine the effect of Ecklonia cava on expressing of blood lipids and UCP-1 of brown adipose tissue(BAT) in zucker rats. Methods : Experimental groups were divided into 3 groups: normal group, control group and sample group for 7 separate rats as expriment. Control and sample groups were genetrically modified obesity. All groups didn't impose restrictions on food and water. And we gave a ecklonia cava to sample group for 6 weeks. Ecklonia cava was examined in effects of blood glucose, insulin concentration and UCP-1 in brown adipose tissue. Results : 1. Control and sample groups were increased in weight. But, sample group was decreased as compared to control group. 2. Sample group was decreased significantly as compared to control group with insulin concentration, HOMA, TG, FFA. 3. Sample group was increased significantly as compared to control group with UCP-1 mRNA. Conclusions : Based on these results, it was proved that Ecklonia cava on obesity effects in decreasing blood lipids, increasing UCP-1 of brown adipose tissue.

Obesity Regulation through Gut Microbiota Modulation and Adipose Tissue Browning (장내 미생물의 조절과 지방세포의 갈색지방화를 통한 비만 조절 연구)

  • Cho, Yejin;Shamim, Rahman Md.;Kim, Yong-Sik
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.922-940
    • /
    • 2019
  • Obesity, represented by abnormal fat accumulation due to an imbalance between energy intake and expenditure, is a major public health issue worldwide, leading to multiple noncommunicable diseases, including atherosclerosis, hypertension, type 2 diabetes, and cancer. Diverse solutions have been proposed to combat obesity. Attention has focused on two types of adipose tissues as a promising therapeutic target in obesity: traditional brown and beige or brite. Unlike energy-storing white adipose (endocrine) tissue, traditional brown adipose tissue and beige adipose tissue have energy-dissipating thermogenic properties. Both types of tissue are present in adult humans and inducible through external stimuli, such as cold exposure, ${\beta}3$-adrenergic receptor agonists, and phytochemicals. Among these stimuli, microbiota present in the human intestinal tract participate in multiple metabolic activities. Modulation of gut microbiota may offer a potent and possibly curative strategy against various metabolic diseases. Numerous studies have focused on the effects of established antiobesity treatments on the gut microenvironment or brown-adipose-tissue activation. In this review, we focus mainly on stimuli known to alleviate obesity, weight gain, and metabolic diseases, in addition to known and possible inter-relations between gut microbiota modulation and similar interventions and adipose tissue browning. The findings may pave the way toward new strategies against obesity.

Sinapic acid induces the expression of thermogenic signature genes and lipolysis through activation of PKA/CREB signaling in brown adipocytes

  • Hossain, Monir;Imran, Khan Mohammad;Rahman, Md. Shamim;Yoon, Dahyeon;Marimuthu, Vignesh;Kim, Yong-Sik
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.142-147
    • /
    • 2020
  • Lipid accumulation in white adipose tissue is the key contributor to the obesity and orchestrates numerous metabolic health problems such as type 2 diabetes, hypertension, atherosclerosis, and cancer. Nonetheless, the prevention and treatment of obesity are still inadequate. Recently, scientists found that brown adipose tissue (BAT) in adult humans has functions that are diametrically opposite to those of white adipose tissue and that BAT holds promise for a new strategy to counteract obesity. In this study, we evaluated the potential of sinapic acid (SA) to promote the thermogenic program and lipolysis in BAT. SA treatment of brown adipocytes induced the expression of brown-adipocyte activation-related genes such as Ucp1, Pgc-1α, and Prdm16. Furthermore, structural analysis and western blot revealed that SA upregulates protein kinase A (PKA) phosphorylation with competitive inhibition by a pan-PKA inhibitor, H89. SA binds to the adenosine triphosphate (ATP) site on the PKA catalytic subunit where H89 binds specifically. PKA-cat-α1 gene-silencing experiments confirmed that SA activates the thermogenic program via a mechanism involving PKA and cyclic AMP response element-binding protein (CREB) signaling. Moreover, SA treatment promoted lipolysis via a PKA/p38-mediated pathway. Our findings may allow us to open a new avenue of strategies against obesity and need further investigation.

Medicarpin induces lipolysis via activation of Protein Kinase A in brown adipocytes

  • Imran, Khan Mohammad;Yoon, Dahyeon;Lee, Tae-Jin;Kim, Yong-Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.249-254
    • /
    • 2018
  • Natural pterocarpan Medicarpin (Med) has been shown to have various beneficial biological roles, including inhibition of osteoclastogenesis, stimulation of bone regeneration and induction of apoptosis. However, the effect of the Med on lipolysis in adipocytes has not been reported. Here, we show the effect of Med on lipolysis in different mouse adipocytes and elucidate the underlying mechanism. We observed that Med treatment promoted release of glycerol in the media. Differentiated mouse brown adipose tissue cells were treated with Med. RNA-Seq analysis was performed to elucidate the effect of med and subsequently was confirmed by qRT-PCR and western blotting analyses. Med treatment increased both protein and gene expression levels of hormone-sensitive lipase (Hsl) and adipose triglyceride lipase (Atgl), which are two critical enzymes necessary for lipolysis. Mechanistic study showed that Med activates Protein Kinase A (PKA) and phosphorylates Hsl at PKA target position at $Serine^{660}$. Silencing of PKA gene by short interfering RNA attenuated the Med-induced increase in glycerol release and Hsl phosphorylation. The results unveil that Med boosts lipolysis via a PKA-dependent pathway in adipocytes and may provide a possible avenue of further research of Med mediated reduction of body fat.

Brown Adipose Tissue Thermogenesis and Obesity (Brown Adipose Tissue의 열생성 기능과 비만)

  • 양경미;서정숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.460-470
    • /
    • 1992
  • Thermogenesis in brown adipose tissue (BAT) can serve the animal in the regulation of its body temperature and of its body weight. Thermogenesis can be switched on by exposure of the animal to cold (non-shivering thermogenesis) or by overeating (diet-induced thermogenesis). BAT mitochondria are uniquely specialized for thermogenesis, possessing a specific proton conductance pathway that is regulated by the concentration of fatty acids in the cells of BAT. The level of fatty acids is in turn controlled by the lipolytic action of noradrenaline on the tissue. When the proton conductance pathway operates, the mitochondria are effectively uncoupled and exhibit extremely high rates of substrate oxidation with a great increase in heat production. Thus it is suggested that BAT is of importance in energy balance and human obesity treatment if thermogenesis can be stimulated specifically.

  • PDF

Body-fat Suppressive Effects of Capsaicin through $\beta$-adrenergic Stimulation in Rats Fed a High-fat Diet (고지방식이를 섭취시킨 흰쥐에서 $\beta$-adrenergic 활성의 증가에 의한 Capsaicin의 체지방 감소효과)

  • 주종재
    • Journal of Nutrition and Health
    • /
    • v.32 no.5
    • /
    • pp.533-539
    • /
    • 1999
  • The effects of capsaicin, a pungent principle of hot red pepper, on body fat gain, balance serum lipid values were investigated in rats fed a high-fat(30%) diet. Administration of capsaicin by dietary administration caused a complete cessation of increased in body weight and fat gain induced by the high-fat diet. However, energy intake and body protein gain were not affected by capsaicin. Therefore, the suppression of body fat gain by capsaicn was believed due to an increased in energy expenditure. Simultaneous administration of capsaicin and a $\beta$-adrenergic blocker, propranolo, resulted in the inhibition of changes in body fat gain by capsaicin without remained unchanged, indicating an increase in the number of mitochondria in brown adipose tissue. Therefore, it appears that capsaicin possesses potent body fat suppressive effects mediated by $\beta$-adrenergic stimulation in which brown adipose tissue may be involved. On the other hand, capsaicin had no effects on serum triglyceride, total cholesterol or HDL-cholesterol levels. These results are in contrast to those reported by other investigators. Perhaps expression of the effects of capsaicin on plasma lipids is a rather complicated process, dependent on the type of diet administered, fat content of the diet, period and route of capsaicin administration, and species and strain of animals used.

  • PDF

Anti-obesity Effects of Kochujang in Rats Fed on a High-fat Diet (고지방 식이를 섭취시킨 흰쥐에서 고추장의 항비만효과)

  • 주종재
    • Journal of Nutrition and Health
    • /
    • v.33 no.8
    • /
    • pp.787-793
    • /
    • 2000
  • The purpose of the present study was to investigate effects of kochujang and red pepper on energy intake, body fat content and energy expenditure in rats fed on high-fat(30%) diet. Kochujang and red pepper power were added in the high-fat diet, adjusting the level to 95 and 22g/kg diet, respectively, The level of red pepper addition was corresponding was corresponding to the level of the content of red pepper powder in the kichujang-added diet. Kochujang induced a 30% reduction in body fat gain which was associated with a significant increase in energy expenditure. However, red pepper reduced body fat gain by only 15%. Furthermore, energy expenditure was not affected by red pepper. Metabolizable energy intake, apparent digestibility and body protein gain were not affected by either kochujang or red pepper. It has been known that capsaicin, a pungent component of red pepper, enhances activity of brown adipose tissue through increasing protein content. In the present study, in addition of protein content, DNA content of interscapular brown adipose tissue was also increased by kochujang. Therefore, it appeared that the anti-obesity effects of kochujang was greater than those of red pepper, indicating more than red pepper was involved in the expression of the anti-obesity effects of kochujang(Korean J Nutrition 33(8) : 787-793, 2000)

  • PDF

The Single-Cell Revelation of Thermogenic Adipose Tissue

  • Qi, Yue;Hui, Xiaoyan Hannah
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.673-684
    • /
    • 2022
  • The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immunometabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.